
“… a thorough, but readable guide to parallel computing—one that can be used by
researchers and students in a wide range of disciplines. … a ‘must-have’ reference
book …”
—David E. Giles, University of Victoria

“This is a book that I will use, both as a reference and for instruction. The examples
are poignant and the presentation moves the reader directly from concept to
working code.”
—Michael Kane, Yale University

Parallel Computing for Data Science: With Examples in R, C++ and CUDA is
one of the first parallel computing books to concentrate exclusively on parallel data
structures, algorithms, software tools, and applications in data science. It includes
examples not only from the classic “n observations, p variables” matrix format but
also from time series, network graph models, and numerous other structures com-
mon in data science. The book also discusses software packages that span more
than one type of hardware and can be used from more than one type of program-
ming language.

Features
• Focuses on applications in the data sciences, including statistics, data mining,

and machine learning
• Discusses structures common in data science, such as network data models
• Emphasizes general principles throughout, such as avoiding factors that

reduce the speed of parallel programs
• Covers the main types of computing platforms: multicore, cluster, and

graphics processing unit (GPU)
• Explains how the Thrust package eases the programming of multicore

machines and GPUs and enables the same code to be used on either platform
• Provides code for the examples on the author’s web page

Dr. Norman Matloff is a professor of computer science at the University of Califor-
nia, Davis, where he was a founding member of the Department of Statistics. He is
a statistical consultant and a former database software developer. He earned a PhD
in pure mathematics from UCLA.

K20322

w w w . c r c p r e s s . c o m

The R Series

Parallel
Computing for
Data Science
With Examples in
R, C++ and CUDA

P
arallel C

om
puting for D

ata S
cience

Norman Matloff

M
atloff

Statistics

K20322_cover.indd 1 5/13/15 9:00 AM

Parallel
Computing for
Data Science
With Examples in
R, C++ and CUDA

K20322_FM.indd 1 5/13/15 4:39 PM

Chapman & Hall/CRC
The R Series

John M. Chambers
Department of Statistics

Stanford University
Stanford, California, USA

Duncan Temple Lang
Department of Statistics

University of California, Davis
Davis, California, USA

Torsten Hothorn
Division of Biostatistics

University of Zurich
Switzerland

Hadley Wickham
RStudio

Boston, Massachusetts, USA

Aims and Scope
This book series reflects the recent rapid growth in the development and application
of R, the programming language and software environment for statistical computing
and graphics. R is now widely used in academic research, education, and industry.
It is constantly growing, with new versions of the core software released regularly
and more than 6,000 packages available. It is difficult for the documentation to
keep pace with the expansion of the software, and this vital book series provides a
forum for the publication of books covering many aspects of the development and
application of R.

The scope of the series is wide, covering three main threads:
• Applications of R to specific disciplines such as biology, epidemiology,

genetics, engineering, finance, and the social sciences.
• Using R for the study of topics of statistical methodology, such as linear and

mixed modeling, time series, Bayesian methods, and missing data.
• The development of R, including programming, building packages, and

graphics.

The books will appeal to programmers and developers of R software, as well as
applied statisticians and data analysts in many fields. The books will feature
detailed worked examples and R code fully integrated into the text, ensuring their
usefulness to researchers, practitioners and students.

Series Editors

K20322_FM.indd 2 5/13/15 4:39 PM

Published Titles

Stated Preference Methods Using R, Hideo Aizaki, Tomoaki Nakatani,
and Kazuo Sato

Using R for Numerical Analysis in Science and Engineering, Victor A. Bloomfield

Event History Analysis with R, Göran Broström

Computational Actuarial Science with R, Arthur Charpentier

Statistical Computing in C++ and R, Randall L. Eubank and Ana Kupresanin

Reproducible Research with R and RStudio, Christopher Gandrud

Introduction to Scientific Programming and Simulation Using R, Second Edition,
Owen Jones, Robert Maillardet, and Andrew Robinson

Nonparametric Statistical Methods Using R, John Kloke and Joseph McKean

Displaying Time Series, Spatial, and Space-Time Data with R,
Oscar Perpiñán Lamigueiro

Programming Graphical User Interfaces with R, Michael F. Lawrence
and John Verzani

Analyzing Sensory Data with R, Sébastien Lê and Theirry Worch

Parallel Computing for Data Science: With Examples in R, C++ and CUDA,
Norman Matloff

Analyzing Baseball Data with R, Max Marchi and Jim Albert

Growth Curve Analysis and Visualization Using R, Daniel Mirman

R Graphics, Second Edition, Paul Murrell

Data Science in R: A Case Studies Approach to Computational Reasoning and
Problem Solving, Deborah Nolan and Duncan Temple Lang

Multiple Factor Analysis by Example Using R, Jérôme Pagès

Customer and Business Analytics: Applied Data Mining for Business Decision
Making Using R, Daniel S. Putler and Robert E. Krider

Implementing Reproducible Research, Victoria Stodden, Friedrich Leisch,
and Roger D. Peng

Graphical Data Analysis with R, Antony Unwin

Using R for Introductory Statistics, Second Edition, John Verzani

Advanced R, Hadley Wickham

Dynamic Documents with R and knitr, Yihui Xie

K20322_FM.indd 3 5/13/15 4:39 PM

K20322_FM.indd 4 5/13/15 4:39 PM

Norman Matloff
University of California, Davis

USA

Parallel
Computing for
Data Science
With Examples in
R, C++ and CUDA

K20322_FM.indd 5 5/13/15 4:39 PM

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20150512

International Standard Book Number-13: 978-1-4665-8703-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a photo-
copy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

Preface xix

Bio xxiii

1 Introduction to Parallel Processing in R 1

1.1 Recurring Theme: The Principle of Pretty Good Parallelism 1

1.1.1 Fast Enough . 1

1.1.2 “R+X” . 2

1.2 A Note on Machines . 3

1.3 Recurring Theme: Hedging One’s Bets 3

1.4 Extended Example: Mutual Web Outlinks 4

1.4.1 Serial Code . 5

1.4.2 Choice of Parallel Tool 7

1.4.3 Meaning of “snow” in This Book 8

1.4.4 Introduction to snow 8

1.4.5 Mutual Outlinks Problem, Solution 1 8

1.4.5.1 Code . 9

1.4.5.2 Timings . 10

1.4.5.3 Analysis of the Code 11

vii

viii CONTENTS

2 “Why Is My Program So Slow?”: Obstacles to Speed 17

2.1 Obstacles to Speed . 17

2.2 Performance and Hardware Structures 18

2.3 Memory Basics . 20

2.3.1 Caches . 20

2.3.2 Virtual Memory . 22

2.3.3 Monitoring Cache Misses and Page Faults 23

2.3.4 Locality of Reference 23

2.4 Network Basics . 23

2.5 Latency and Bandwidth . 24

2.5.1 Two Representative Hardware Platforms: Multicore
Machines and Clusters 25

2.5.1.1 Multicore 26

2.5.1.2 Clusters . 29

2.5.2 The Principle of “Just Leave It There” 29

2.6 Thread Scheduling . 29

2.7 How Many Processes/Threads? 31

2.8 Example: Mutual Outlink Problem 31

2.9 “Big O” Notation . 32

2.10 Data Serialization . 33

2.11 “Embarrassingly Parallel” Applications 33

2.11.1 What People Mean by “Embarrassingly Parallel” . . 33

2.11.2 Suitable Platforms for Non-Embarrassingly Parallel
Applications . 34

3 Principles of Parallel Loop Scheduling 35

3.1 General Notions of Loop Scheduling 36

3.2 Chunking in snow . 38

CONTENTS ix

3.2.1 Example: Mutual Outlinks Problem 38

3.3 A Note on Code Complexity 40

3.4 Example: All Possible Regressions 41

3.4.1 Parallelization Strategies 41

3.4.2 The Code . 42

3.4.3 Sample Run . 45

3.4.4 Code Analysis . 45

3.4.4.1 Our Task List 46

3.4.4.2 Chunking 47

3.4.4.3 Task Scheduling 47

3.4.4.4 The Actual Dispatching of Work 48

3.4.4.5 Wrapping Up 50

3.4.5 Timing Experiments 50

3.5 The partools Package . 52

3.6 Example: All Possible Regressions, Improved Version 52

3.6.1 Code . 53

3.6.2 Code Analysis . 56

3.6.3 Timings . 56

3.7 Introducing Another Tool: multicore 57

3.7.1 Source of the Performance Advantage 58

3.7.2 Example: All Possible Regressions, Using multicore . 59

3.8 Issues with Chunk Size . 63

3.9 Example: Parallel Distance Computation 64

3.9.1 The Code . 65

3.9.2 Timings . 68

3.10 The foreach Package . 69

3.10.1 Example: Mutual Outlinks Problem 70

x CONTENTS

3.10.2 A Caution When Using foreach 72

3.11 Stride . 73

3.12 Another Scheduling Approach: Random Task Permutation 74

3.12.1 The Math . 74

3.12.2 The Random Method vs. Others, in Practice 76

3.13 Debugging snow and multicore Code 77

3.13.1 Debugging in snow 77

3.13.2 Debugging in multicore 78

4 The Shared-Memory Paradigm: A Gentle Introduction via
R 79

4.1 So, What Is Actually Shared? 80

4.1.1 Global Variables . 80

4.1.2 Local Variables: Stack Structures 81

4.1.3 Non-Shared Memory Systems 83

4.2 Clarity of Shared-Memory Code 83

4.3 High-Level Introduction to Shared-Memory Programming:
Rdsm Package . 84

4.3.1 Use of Shared Memory 85

4.4 Example: Matrix Multiplication 85

4.4.1 The Code . 86

4.4.2 Analysis . 87

4.4.3 The Code . 88

4.4.4 A Closer Look at the Shared Nature of Our Data . . 89

4.4.5 Timing Comparison 90

4.4.6 Leveraging R . 91

4.5 Shared Memory Can Bring A Performance Advantage . . . 91

4.6 Locks and Barriers . 94

CONTENTS xi

4.6.1 Race Conditions and Critical Sections 94

4.6.2 Locks . 95

4.6.3 Barriers . 97

4.7 Example: Maximal Burst in a Time Series 97

4.7.1 The Code . 97

4.8 Example: Transforming an Adjacency Matrix 99

4.8.1 The Code . 100

4.8.2 Overallocation of Memory 104

4.8.3 Timing Experiment 104

4.9 Example: k-Means Clustering 106

4.9.1 The Code . 106

4.9.2 Timing Experiment 113

5 The Shared-Memory Paradigm: C Level 115

5.1 OpenMP . 116

5.2 Example: Finding the Maximal Burst in a Time Series . . . 116

5.2.1 The Code . 116

5.2.2 Compiling and Running 119

5.2.3 Analysis . 120

5.2.4 A Cautionary Note About Thread Scheduling 123

5.2.5 Setting the Number of Threads 123

5.2.6 Timings . 124

5.3 OpenMP Loop Scheduling Options 124

5.3.1 OpenMP Scheduling Options 124

5.3.2 Scheduling through Work Stealing 125

5.4 Example: Transforming an Adjacency Matrix 127

5.4.1 The Code . 127

xii CONTENTS

5.4.2 Analysis of the Code 129

5.5 Example: Adjacency Matrix, R-Callable Code 132

5.5.1 The Code, for .C() 132

5.5.2 Compiling and Running 134

5.5.3 Analysis . 137

5.5.4 The Code, for Rcpp 137

5.5.5 Compiling and Running 140

5.5.6 Code Analysis . 141

5.5.7 Advanced Rcpp . 143

5.6 Speedup in C . 143

5.7 Run Time vs. Development Time 144

5.8 Further Cache/Virtual Memory Issues 144

5.9 Reduction Operations in OpenMP 149

5.9.1 Example: Mutual In-Links 149

5.9.1.1 The Code 150

5.9.1.2 Sample Run 151

5.9.1.3 Analysis 151

5.9.2 Cache Issues . 152

5.9.3 Rows vs. Columns 152

5.9.4 Processor Affinity 152

5.10 Debugging . 153

5.10.1 Threads Commands in GDB 153

5.10.2 Using GDB on C/C++ Code Called from R 153

5.11 Intel Thread Building Blocks (TBB) 154

5.12 Lockfree Synchronization 155

CONTENTS xiii

6 The Shared-Memory Paradigm: GPUs 157

6.1 Overview . 157

6.2 Another Note on Code Complexity 158

6.3 Goal of This Chapter . 159

6.4 Introduction to NVIDIA GPUs and CUDA 159

6.4.1 Example: Calculate Row Sums 160

6.4.2 NVIDIA GPU Hardware Structure 164

6.4.2.1 Cores . 164

6.4.2.2 Threads . 165

6.4.2.3 The Problem of Thread Divergence 166

6.4.2.4 “OS in Hardware” 166

6.4.2.5 Grid Configuration Choices 167

6.4.2.6 Latency Hiding in GPUs 168

6.4.2.7 Shared Memory 168

6.4.2.8 More Hardware Details 169

6.4.2.9 Resource Limitations 169

6.5 Example: Mutual Inlinks Problem 170

6.5.1 The Code . 170

6.5.2 Timing Experiments 173

6.6 Synchronization on GPUs 173

6.6.1 Data in Global Memory Is Persistent 174

6.7 R and GPUs . 175

6.7.1 Example: Parallel Distance Computation 175

6.8 The Intel Xeon Phi Chip . 176

7 Thrust and Rth 179

7.1 Hedging One’s Bets . 179

xiv CONTENTS

7.2 Thrust Overview . 180

7.3 Rth . 180

7.4 Skipping the C++ . 181

7.5 Example: Finding Quantiles 181

7.5.1 The Code . 181

7.5.2 Compilation and Timings 183

7.5.3 Code Analysis . 183

7.6 Introduction to Rth . 186

8 The Message Passing Paradigm 189

8.1 Message Passing Overview 189

8.2 The Cluster Model . 190

8.3 Performance Issues . 191

8.4 Rmpi . 191

8.4.1 Installation and Execution 192

8.5 Example: Pipelined Method for Finding Primes 193

8.5.1 Algorithm . 194

8.5.2 The Code . 195

8.5.3 Timing Example . 198

8.5.4 Latency, Bandwdith and Parallelism 199

8.5.5 Possible Improvements 199

8.5.6 Analysis of the Code 200

8.6 Memory Allocation Issues 203

8.7 Message-Passing Performance Subtleties 204

8.7.1 Blocking vs. Nonblocking I/O 204

8.7.2 The Dreaded Deadlock Problem 205

CONTENTS xv

9 MapReduce Computation 207

9.1 Apache Hadoop . 208

9.1.1 Hadoop Streaming 208

9.1.2 Example: Word Count 208

9.1.3 Running the Code 209

9.1.4 Analysis of the Code 211

9.1.5 Role of Disk Files . 212

9.2 Other MapReduce Systems 212

9.3 R Interfaces to MapReduce Systems 213

9.4 An Alternative: “Snowdoop” 213

9.4.1 Example: Snowdoop Word Count 214

9.4.2 Example: Snowdoop k-Means Clustering 215

10 Parallel Sorting and Merging 219

10.1 The Elusive Goal of Optimality 219

10.2 Sorting Algorithms . 220

10.2.1 Compare-and-Exchange Operations 220

10.2.2 Some “Representative” Sorting Algorithms 220

10.3 Example: Bucket Sort in R 223

10.4 Example: Quicksort in OpenMP 224

10.5 Sorting in Rth . 226

10.6 Some Timing Comparisons 229

10.7 Sorting on Distributed Data 230

10.7.1 Hyperquicksort . 230

11 Parallel Prefix Scan 233

11.1 General Formulation . 233

11.2 Applications . 234

11.3 General Strategies . 235

xvi CONTENTS

11.3.1 A Log-Based Method 235

11.3.2 Another Way . 237

11.4 Implementations of Parallel Prefix Scan 238

11.5 Parallel cumsum() with OpenMP 239

11.5.1 Stack Size Limitations 241

11.5.2 Let’s Try It Out . 241

11.6 Example: Moving Average 242

11.6.1 Rth Code . 243

11.6.2 Algorithm . 244

11.6.3 Performance . 245

11.6.4 Use of Lambda Functions 247

12 Parallel Matrix Operations 251

12.1 Tiled Matrices . 252

12.2 Example: Snowdoop Approach 253

12.3 Parallel Matrix Multiplication 254

12.3.1 Multiplication on Message-Passing Systems 255

12.3.1.1 Distributed Storage 255

12.3.1.2 Fox’s Algorithm 255

12.3.1.3 Overhead Issues 256

12.3.2 Multiplication on Multicore Machines 257

12.3.2.1 Overhead Issues 257

12.3.3 Matrix Multiplication on GPUs 258

12.3.3.1 Overhead Issues 259

12.4 BLAS Libraries . 260

12.4.1 Overview . 260

12.5 Example: Performance of OpenBLAS 261

CONTENTS xvii

12.6 Example: Graph Connectedness 264

12.6.1 Analysis . 264

12.6.2 The “Log Trick” . 266

12.6.3 Parallel Computation 266

12.6.4 The matpow Package 267

12.6.4.1 Features 267

12.7 Solving Systems of Linear Equations 267

12.7.1 The Classical Approach: Gaussian Elimination and
the LU Decomposition 268

12.7.2 The Jacobi Algorithm 270

12.7.2.1 Parallelization 270

12.7.3 Example: R/gputools Implementation of Jacobi . . . 271

12.7.4 QR Decomposition 271

12.7.5 Some Timing Results 272

12.8 Sparse Matrices . 272

13 Inherently Statistical Approaches: Subset Methods 275

13.1 Chunk Averaging . 275

13.1.1 Asymptotic Equivalence 276

13.1.2 O(·) Analysis . 277

13.1.3 Code . 278

13.1.4 Timing Experiments 278

13.1.4.1 Example: Quantile Regression 278

13.1.4.2 Example: Logistic Model 278

13.1.4.3 Example: Estimating Hazard Functions . . 281

13.1.5 Non-i.i.d. Settings 282

13.2 Bag of Little Bootstraps . 283

13.3 Subsetting Variables . 283

xviii CONTENTS

A Review of Matrix Algebra 285

A.1 Terminology and Notation 285

A.1.1 Matrix Addition and Multiplication 286

A.2 Matrix Transpose . 287

A.3 Linear Independence . 288

A.4 Determinants . 288

A.5 Matrix Inverse . 288

A.6 Eigenvalues and Eigenvectors 289

A.7 Matrix Algebra in R . 290

B R Quick Start 293

B.1 Correspondences . 293

B.2 Starting R . 294

B.3 First Sample Programming Session 294

B.4 Second Sample Programming Session 298

B.5 Third Sample Programming Session 300

B.6 The R List Type . 301

B.6.1 The Basics . 301

B.6.2 The Reduce() Function 302

B.6.3 S3 Classes . 302

B.6.4 Handy Utilities . 304

B.7 Debugging in R . 305

C Introduction to C for R Programmers 307

C.0.1 Sample Program . 307

C.0.2 Analysis . 308

C.1 C++ . 310

Index 311

Preface

Thank you for your interest in this book. I’ve very much enjoyed writing
it, and I hope it turns out to become very useful to you. To set the stage,
there are a few general points of information I wish to present.

Goals:

This book hopefully will live up to its title—Parallel Computing for Data
Science. Unlike almost every other book I’m aware of on parallel comput-
ing, you will not find a single example here dealing with solving partial
differential equations and other applications to physics. This book really is
devoted to applications in data science—whether you define that term to
be statistics, data mining, machine learning, pattern recognition, analytics,
or whatever.1

This means more than simply that the book’s examples involve applications
chosen from the data science field. It also means that the data structures,
algorithms and so on reflect this orientation. This will range from the classic
“n observations, p variables” matrix format to time series to network graph
models to various other structures common in data science.

While the book is chock full of examples, it aims to emphasize general
principles. Accordingly, after presenting an introductory code example in
Chapter 1 (general principles are meaningless without real examples to tie
them to), I devote Chapter 2 not so much as how to write parallel code, as
to explaining what the general factors are that can rob a parallel program
of speed. This is a crucial chapter, referred to constantly in the succeeding
chapters. Indeed, one can regard the entire book as addressing the plight
of the poor guy described at the beginning of Chapter 2:

1Ironically, I myself am not a big fan of the term data science, but it does encompass
these various views, and highlight the point that this book is about data, not physics.

xix

xx PREFACE

Here is an all-too-common scenario: An analyst acquires a brand
new multicore machine, capable of wondrous things. With great
excitement, he codes up his favorite large problem on the new
machine—only to find that the parallel version runs more slowly
than the serial one. What a disappointment! Let’s see what fac-
tors can lead to such a situation...

The use of the word computing in the book’s title reflects the fact that the
book’s main focus is indeed computation. This is in contrast to parallel
data processing, such as in distributed file storage exemplified by that of
Hadoop, though a chapter is devoted to such settings.

The main types of computing platforms covered are multicore, cluster and
GPU. In addition, there is considerable coverage of Thrust, a wonderful tool
that greatly eases the programming of multicore machines and GPUs—and
simultaneously, in the sense that the same code is usable on either platform!
I believe readers will find this material especially valuable.

One thing this book is not, is a user manual. Though it uses specific tools
throughout, such as R’s parallel and Rmpi packages, OpenMP, CUDA
and so on, this is for the sake of concreteness. The book will give the
reader a solid introduction to these tools, but is not a compendium of
all the different function arguments, environment options and so on. The
intent is that the reader, upon completing this book, will be well-poised
to learn more about these tools, and most importantly, to write effective
parallel code in various other languages, be it Python, Julia or whatever.

Necessary background:

If you consider yourself reasonably adept in using R, you should find most
of this book quite accessible. A few sections do use C/C++, and prior
background in those languages is needed if you wish to read those sections
in full detail. However, even without knowing C/C++ well. you should still
find that material fairly readable, and of considerable value. Appendices
summarizing R for C programmers, and introducing C to R people, are
included.

You should be familiar with basic math operations with matrices, mainly
multiplication and addition. Occasionally some more advanced operations
will be used, such as inversion (and its cousins, such as QR methods) and
diagonalization, which are presented in Appendix A.

Machines:

Except when stated otherwise, all timing examples in this book were run
on a 16-core Ubuntu machine, with hyperthreading degree 2. I generally

PREFACE xxi

used 2 to 24 cores, a range that should be similar to the platforms most
readers will have available. I anticipate that the typical reader will have
access to a multicore system with 4 to 16 cores, or a cluster with dozens of
nodes. But even if you only have a single dual-core machine, you should
still find the material here to be valuable.

For those rare and lucky readers who have access to a system consisting of
thousands of cores, the material still applies, subject to the book’s point
that for such systems, the answer to the famous question, “Does it scale?”
is often No.

CRAN packages and code:

This book makes use of several of my packages on CRAN, the R contributed
software repository (http://cran.r-project.org): Rdsm, partools and
matpow.

Code for the examples in this book is available at the author’s Web page
for the book, http://heather.cs.ucdavis.edu/pardatasci.html.

A note on fonts:

Function and variable names are in bold face, as are R packages (but not
other packages). Code listings use the lstlisting package for LaTeX, usually
tailored to the language used, e.g. R or C. Math italic font is used for
mathematical quantities.

Thanks:

I wish to thank everyone who provided information useful to this project, ei-
ther directly or indirectly. An alphabetic list would include JJ Allaire, Stu-
art Ambler, Matt Butner, Federico De Giuli, Matt Dowle, Dirk Eddelbuet-
tel, David Giles, Stuart Hansen, Richard Heiberger, Bill Hsu, Michael Kane,
Sameer Khan, Bryan Lewis, Mikel McDaniel, Richard Minner, George Os-
trouchov, Drew Schmidt, Lars Seeman, Marc Sosnick, and Johan Wikström.
I’m also very grateful to Professor Hsu for his making available to me an
advanced GPU-equipped machine, and to Professor Hao Chen for use of
his multicore system.

I first started developing my Rdsm package, used in parts of this book, at
the same time that Michael Kane and Jay Emerson were developing their
bigmemory package. Once we discovered each other’s work, we had e-mail
exchanges that I found quite valuable. In fact, in my later version, I decided
to use bigmemory as a base, among other things because of its ability to
use backing store. In the latter, I benefitted much from conversations with
Michael, as well as with Bryan Lewis.

xxii PREFACE

Much gratitude goes to the internal reviewers, David Giles, Mike Hannon
and Michael Kane. I am especially grateful to my old friend Mike Hannon,
who provided amazingly detailed feedback. Thanks go also to John Kimmel,
Executive Editor for Statistics at Chapman and Hall, who has been highly
supportive since the beginning.

My wife Gamis and my daughter Laura both have a contagious sense of
humor and zest for life that greatly improve everything I do.

Author’s Biography

Dr. Matloff was born in Los Angeles, and grew up in East Los Angeles and
the San Gabriel Valley. He has a PhD in pure mathematics from UCLA,
specializing in probability theory and statistics. He has published numerous
papers in computer science and statistics, with current research interests in
parallel processing, statistical computing, and regression methodology. He
is on the editorial board of the Journal of Statistical Software.

Professor Matloff is a former appointed member of IFIP Working Group
11.3, an international committee concerned with database software security,
established under UNESCO. He was a founding member of the UC Davis
Department of Statistics, and participated in the formation of the UCD
Computer Science Department as well. He is a recipient of the campus-wide
Distinguished Teaching Award and Distinguished Public Service Award at
UC Davis.

xxiii

Chapter 1

Introduction to Parallel
Processing in R

Instead of starting with an abstract overview of parallel programming, we’ll
get right to work with a concrete example in R. The abstract overview can
wait. But we should place R in proper context first.

1.1 Recurring Theme: The Principle of Pretty
Good Parallelism

Most of this book’s examples involve the R programming language, an in-
terpreted language. R’s core operations tend to have very efficient internal
implementation, and thus the language generally can offer good perfor-
mance if used properly.

1.1.1 Fast Enough

In settings in which you really need to maximize execution speed, you may
wish to resort to writing in a compiled language such as C/C++, which we
will indeed do occasionally in this book. However, the extra speed that may
be attained via the compiled language typically is just not worth the effort.
In other words, we have an analogy to the Pretty Good Privacy security
system:

1

2 CHAPTER 1. INTRODUCTION

The Principle of Pretty Good Parallelism:

In many cases just “pretty fast” is quite good enough. The extra
speed we might attain by moving from R to C/C++ does not
justify the possibly much longer time needed to write, debug
and maintain code at that level.

This of course is the reason for the popularity of the various parallel R pack-
ages. They fulfill a desire to code parallel operations yet still stay in R. For
example, the Rmpi package provides an R connection to the Message Pass-
ing Interface (MPI), a very widely used parallel processing system in which
applications are normally written in C/C++ or FORTRAN.1 Rmpi gives
analysts the opportunity to take advantage of MPI while staying within R.
But as an alternative to Rmpi that also uses MPI, R users could write their
application code in C/C++, calling MPI functions, and then interface R to
the resulting C /C++function. But in doing so, they would be foregoing
the coding convenience and rich package available in R. So, most opt for
using MPI only via the Rmpi interface, not directly in C/C++.

The aim of this book is to provide a general treatment of parallel processing
in data science. The fact that R provides a rich set of powerful, high-level
data and statistical operations means that examples in R will be shorter
and simpler than they would typically be in other languages. This enables
the reader to truly focus on the parallel computation methods themselves,
rather than be distracted by having to wade through the details of, say,
intricate nested loops. Not only is this useful from a learning point of view,
but also it will make it easy to adapt the code and techniques presented
here to other languages, such as Python or Julia.

1.1.2 “R+X”

Indeed, a major current trend in R is what might be called “R+X,” where
X is some other language or library. R+C, in which one writes one’s main
code in R but writes a portion needing extra speed in C or C++, has been
common since the beginnings of R. These days X might be Python, Julia,
Hadoop, H2O or lots of other things.

1For brevity, I’ll usually not mention FORTRAN, as it is not used as much in data
science.

1.2. A NOTE ON MACHINES 3

1.2 A Note on Machines

Three types of machines will be used for illustration in this book: multicore
systems, clusters and graphics processing units (GPUs). As noted in the
preface, I am not targeting the book to those fortunate few who have access
to supercomputers (though the methods presented here do apply to such
machines). Instead, it is assumed that most readers will have access to
more modest systems, say multicore with 4-16 cores, or clusters with nodes
numbering in the dozens, or a single GPU that may not be the absolute
latest model.

Most of the multicore examples in this book were run on a 32-core system
on which I seldom used all the cores (as I was a guest user). The timing
experiments usually start with a small number of cores, say 2 or 4.

As to clusters, my coverage of “message-passing” software was typically run
on the multicore system, though occasionally on a real cluster to demon-
strate the effects of overhead.

The GPU examples here were typically run on modest hardware.

Again, the same methods as used here do apply to the more formidable
systems, such as the behemoth supercomputers with multiple GPUs and so
on. Tweaking is typically needed for such systems, but this is beyond the
scope of this book.

1.3 Recurring Theme: Hedging One’s Bets

As I write this in 2014, we are in an exciting time for parallel processing.
Hardware can be purchased for the home that has speeds and degrees of
parallelism that were unimaginable for ordinary PC users just a decade
ago. There have been tremendous improvements in software as well; R
now has a number of approaches to parallelism, as we will see in this book;
Python finally threw off its GIL yoke a few years ago;2 C++11 has built-in
parallelism; and so on.

Due to all this commotion, though, we really are in a rather unsettled state
as we look forward to the coming years. Will GPUs become more and
more mainstream? Will multicore chips routinely contain so many cores
that GPUs remain a nice type of hardware? Will accelerator chips like the

2This is the Global Interpreter Lock, which prevented true parallel operation in
Python. The GIL is still there, but Python now has ways around it.

4 CHAPTER 1. INTRODUCTION

Intel Xeon Phi overtake GPUs? And will languages keep pace with the
advances in hardware?

For this reason, software packages that span more than one type of hard-
ware, and can be used from more than one type of programming language,
have great appeal. The Thrust package, the topic of Chapter 7 and some
of the later sections, epitomizes this notion. The same Thrust code can
run on either multicore or GPU platforms, and since it is C++ based, it is
accessible from R or most other languages. In short, Thrust allows us to
“hedge our bets” when we develop parallel code.

Message-passing software systems, such as R’s snow, Rmpi and pbdR,
have much the same advantage, as they can run on either multicore ma-
chines or clusters.

1.4 Extended Example: Mutual Web Out-
links

So, let’s look at our promised concrete example.

Suppose we are analyzing Web traffic, and one of our questions concerns
how often two websites have links to the same third site. Say we have
outlink information for n Web pages. We wish to find the mean number of
mutual outlinks per pair of sites, among all pairs.

This computation is actually similar in pattern to those of many statistical
methods, such as Kendall’s τ and the U-statistic family. The pattern takes
the following form. For data consisting of n observations, the pattern is to
compute some quantity g for each pair of observations, then sum all those
values, as in this pseudocode (i.e., outline):

sum = 0.0

for i = 1,...,n-1

for j = i+1,,...,n

sum = sum + g(obs.i, obs.j)

With nested loops like this, you’ll find in this book that it is generally easier
to parallelize the outer loop rather than the inner one. If we have a dual
core machine, for instance, we could assign one core to handle some values
of i in the above code and the other core to handle the rest. Ultimately
we’ll do that here, but let’s first take a step back and think about this
setting.

1.4. EXTENDED EXAMPLE: MUTUAL WEB OUTLINKS 5

1.4.1 Serial Code

Let’s first implement this procedure in serial code:

mutoutser <− function (l i n k s) {
nr <− nrow(l i n k s)
nc <− ncol (l i n k s)
to t = 0
for (i in 1 : (nr−1)) {

for (j in (i +1): nr) {
for (k in 1 : nc)

to t <− to t + l i n k s [i , k] ∗ l i n k s [j , k]
}

}
to t / (nr ∗ (nr−1) / 2)

}

Here links is a matrix representing outlinks of the various sites, with
links[i,j] being 1 or 0, according to whether there is an outlink from site i
to site j. The code is a straightforward implementation of the pseudocode
in Listing 1.4.1 above.

How does this code do in terms of performance? Consider this simulation:

sim <− function (nr , nc) {
lnk <− matrix (sample (0 : 1 , (nr∗nc) , replace=TRUE) ,

nrow=nr)
system . time (mutoutser (lnk))

}

We generate random 1s and 0s, and call the function. Here’s a sample run:

> sim (500 ,500)
user system e lapsed

106.111 0 .030 106.659

Elapsed time of 106.659 seconds—awful! We’re dealing with 500 websites,
a tiny number in view of the millions that are out there, and yet it took
almost 2 minutes to find the mean mutual outlink value for this small group
of sites.

It is well known, though, that explicit for loops are slow in R, and here we
have two of them. The first solution to try for loop avoidance is vectoriza-
tion, meaning to replace a loop with some vector computation. This gives
one the speed of the C code that underlies the vector operation, rather

6 CHAPTER 1. INTRODUCTION

than having to translate the R repeatedly for each line of the loop, at each
iteration.

In the code for mutoutser() above, the inner loops can be rewritten as a
matrix product, as we will see below, and that will turn out to eliminate
two of our loops.3

To see the matrix formulation, suppose we have this matrix:


0 1 0 0 1
1 0 0 1 1
0 1 0 1 0
1 1 1 0 0
1 1 1 0 1

 (1.1)

Consider the case in which i is 2 and j is 4 in the above pseudocode, Listing
1.4.1. The innermost loop, i.e., the one involving k, computes

1 · 1 + 0 · 1 + 0 · 1 + 1 · 0 + 1 · 0 = 1 (1.2)

But that is merely the inner product of rows i and j of the matrix! In other
words, it’s

l i n k s [i ,] %∗% l i n k s [j ,]

But there’s more. Again consider the case in which i is 2. The same
reasoning as above shows that the entire computation for all j and k, i.e.,
the two innermost loops, can be written as

 0 1 0 1 0
1 1 1 0 0
1 1 1 0 1




1
0
0
1
1

 =

 1
1
2

 (1.3)

The matrix on the left is the portion of our original matrix below row 2,
and the vector on the right is row 2 itself.

Those numbers, 1, 1 and 2, are the results we would get from running the
code with i equal to 2 and j equal to 3, 4 and 5. (Check this yourself to get
a better grasp of how this works.)

3In R, a matrix is a special case of a vector, so we are indeed using vectorization here,
as promised.

1.4. EXTENDED EXAMPLE: MUTUAL WEB OUTLINKS 7

So, we can eliminate two loops, as follows:

mutoutser1<− function (l i n k s) {
nr <− nrow(l i n k s)
nc <− ncol (l i n k s)
to t <− 0
for (i in 1 : (nr−1)) {

tmp <− l i n k s [(i +1): nr ,] %∗% l i n k s [i ,]
t o t <− to t + sum(tmp)

}
to t / nr

}

This actually brings a dramatic improvement:

sim1 <− function (nr , nc) {
lnk <− matrix (sample (0 : 1 , (nr∗nc) , replace=TRUE) ,

nrow=nr)
print (system . time (mutoutser1 (lnk)))

}

> sim1 (500 ,500)
user system e lapsed

1 .443 0 .044 1 .496

Wonderful! Nevertheless, that is still only for the very small 500-site case.
Let’s run it for 2000:

> sim1 (2000 ,2000)
user system e lapsed

92 .378 1 .002 94 .071

Over 1.5 minutes! And 2000 is still not very large.

We could further fine-tune our code, but it does seem that parallelizing
may be a better option. Let’s go that route.

1.4.2 Choice of Parallel Tool

The most popular tools for parallel R are snow, multicore, foreach and
Rmpi. Since the first two of these are now part of the R core in a package
named parallel, it is easiest to use one of them for our introductory mate-
rial in this chapter, rather than having the user install another package at
this point.

8 CHAPTER 1. INTRODUCTION

Our set of choices is further narrowed by the fact that multicore runs
only on Unix-family (e.g., Linux and Mac) platforms, not Windows. Ac-
cordingly, at this early point in the book, we will focus on snow.

1.4.3 Meaning of “snow” in This Book

As noted, an old contributed package for R, snow, was later made part of
the R base, in the latter’s parallel package (with slight modifications). We
will make frequent use of this part of that package, so we need a short name
for it. “The portion of parallel adapted from snow” would be anything
but short. So, we’ll just call it snow.

1.4.4 Introduction to snow

Here is the overview of how snow operates: All four of the popular packages
cited above, including snow, typically employ a scatter/gather paradigm:
We have multiple instances of R running at the same time, either on several
machines in a cluster, or on a multicore machine. We’ll refer to one of
the instances as the manager, with the rest being workers. The parallel
computation then proceeds as follows:

• scatter: The manager breaks the desired computation into chunks,
and sends (“scatters”) the chunks to the workers.

• chunk computation: The workers then do computation on each
chunk, and send the results back to the manager.

• gather: The manager receives (“gathers”) those results, and com-
bines them to solve the original problem.

In our mutual-outlink example here, each chunk would consist of some
values of i in the outer for loop in Listing 1.4.1. In other words, each
worker would determine the total count of mutual outlinks for this worker’s
assigned values of i, and then return that count to the manager. The latter
would collect these counts, sum them to form the grand total, and then
obtain the average by dividing by the number of node pairs, n(n-1)/2.

1.4.5 Mutual Outlinks Problem, Solution 1

Here’s our first cut at the mutual outlinks problem:

1.4. EXTENDED EXAMPLE: MUTUAL WEB OUTLINKS 9

1.4.5.1 Code

library (p a r a l l e l)

doichunk <− function (ichunk) {
to t <− 0
nr <− nrow(lnks) # l n k s g l o b a l a t worker
for (i in ichunk) {

tmp <− l nks [(i +1): nr ,] %∗% l nks [i ,]
t o t <− to t + sum(tmp)

}
to t

}

mutoutpar <− function (c l s , l nks) {
nr <− nrow(lnks) # l n k s g l o b a l a t manager
c lu s t e rExpor t (c l s , ” lnks ”)
each ”chunk” has on ly 1 v a l u e o f i , f o r now
i chunks <− 1 : (nr−1)
t o t s <− c lus te rApp ly (c l s , ichunks , doichunk)
Reduce (sum, t o t s) / nr

}

snowsim <− function (nr , nc , c l s) {
l nks <<−

matrix (sample (0 : 1 , (nr∗nc) , replace=TRUE) ,
nrow=nr)

system . time (mutoutpar (c l s , l nks))
}

s e t up c l u s t e r o f nworkers workers on
m u l t i c o r e machine
in i tmc <− function (nworkers) {

makeCluster (nworkers)
}

s e t up a c l u s t e r on machines s p e c i f i e d ,
one worker per machine
i n i t c l s <− function (workers) {

makeCluster (spec=workers)
}

10 CHAPTER 1. INTRODUCTION

1.4.5.2 Timings

Before explaining how this code works, let’s see if it yields a speed improve-
ment. I ran on the same machine used earlier, but in this case with two
workers, i.e., on two cores. Here are the results:

> c l 2 <− in i tmc (2)
> snowsim (2000 ,2000 , c l 2)

user system e lapsed
0 .237 0 .047 80 .348

So we did get a speedup, with run time being diminished by almost 14
seconds. Good, but note that the speedup factor is only 94.071/80.348 =
1.17, not the 2.00 one might expect from using two workers. This illustrates
that communication and other overhead can indeed be a major factor.

Note the stark discrepancy between user and elapsed time here. Remem-
ber, these are times for the manager! The main computation is done by
the workers, and their times don’t show up here except in elapsed time.

You might wonder whether two cores are enough, since we have a total
of three processes—two workers and the manager. But since the manager
is idle while the two workers are computing, there would be no benefit in
having the manager run on a separate core, even if we had one (which we
in a sense do, with hyperthreading, to be explained shortly).

This run was performed on a dual core machine, hence our using two work-
ers. However, we may be able to do a bit better, as this machine has a
hyperthreaded processor. This means that each core is capable, to some
degree, of running two programs at once. Thus I tried running with four
workers:

> c l 2 <− in i tmc (4)
> snowsim (2000 ,2000 , c l 2)

user system e lapsed
0 .484 0 .051 70 .077

So, hyperthreading did yield further improvement, raising our speedup fac-
tor to 1.34. Note, though, that now there is even further disparity between
the 4.00 speedup we might hope to get with four workers. As noted, these
issues will arise frequently in this book; the sources of overhead will be
discussed, and remedies presented.

There is another reason why our speedups above are not so impressive: Our
code is fundamentally unfair—it makes some workers do more work than

1.4. EXTENDED EXAMPLE: MUTUAL WEB OUTLINKS 11

others. This is known as a load balancing problem, one of the central issues
in the parallel processing field. We’ll address this in a refined version in
Chapter 3.

1.4.5.3 Analysis of the Code

So, how does all this work? Let’s dissect the code.

Even though snow and multicore are now part of R via the parallel
package, the package is not automatically loaded. So we need to take care
of this first, by placing a line

l ibrary (p a r a l l e l)

at the top of our source file (if all these functions are in one file), or simply
execute the above library() call on the command line.

Or, we can insert a line

require (p a r a l l e l)

in the functions that make use of snow.

Now, who does what? It’s important to understand that most of the lines
of code in the serial version are executed by the manager. The only code
run by the workers will be doichunk(), though of course that is where the
main work is done. As will be seen, the manager sends that function (and
data) to the workers, who execute the function according to the manager’s
directions.

The basic idea is to break the values of i in the i loop in our earlier serial
code, Listing 1.4.1, into chunks, and then have each worker work on its
chunk. Our function doichunk() (“do element i in ichunk”),

doichunk <− function (ichunk) {
to t <− 0
nr <− nrow(lnks) # l n k s g l o b a l a t worker
for (i in ichunk) {

tmp <− l nks [(i +1): nr ,] %∗% l nks [i ,]
t o t <− to t + sum(tmp)

}
to t

}

will be executed for each worker, with ichunk being different for each
worker.

12 CHAPTER 1. INTRODUCTION

Our function mutoutpar() wraps the overall process, dividing into the i
values into chunks and calling doichunk() on each one. It thus parallelizes
the outer loop of the serial code.

mutoutpar <− function (c l s , l nks) {
nr <− nrow(lnks)
c lu s t e rExpor t (c l s , ” lnks ”)
ichunks <− 1 : (nr−1)
t o t s <− c lus te rApp ly (c l s , ichunks , doichunk)
Reduce (sum, t o t s) / nr

}

To get an overview of that function, note that the main actions consist of
the follwing calls to snow and R functions:

• We call snow’s clusterExport() to send our data, in this case the
lnks matrix, to the workers.

• We call snow’s clusterApply() to direct the workers to perform
their assigned chunks of work.

• We call R’s core function Reduce() as a convenient way to combine
the results returned by the workers.

Here are the details: Even before calling mutoutpar(), we set up our snow
cluster:

makeCluster (nworkers)

This sets up nworkers workers. Remember, each of these workers will be
separate R processes (as will be the manager). In this simple form, they
will all be running on the same machine, presumably multicore.

Clusters are snow abstractions, not physical entities, though we can set up
a snow cluster on a physical cluster of machines. As will be seen in detail
later, a cluster is an R object that contains information on the various
workers and how to reach them. So, if I run

c l s <− in i tmc (4)

I create a 4-node snow cluster (for 4 workers) and save its information in
an R object cls (of class “cluster”), which will be used in my subsequent
calls to snow functions.

There is one component in cls for each worker. So after the above call,
running

1.4. EXTENDED EXAMPLE: MUTUAL WEB OUTLINKS 13

length (c l s)

prints out 4.

We can also run snow on a physical cluster of machines, i.e., several ma-
chines connected via a network. Calling the above function initcls() ar-
ranges this. In my department, for example, we have student lab machines
named pc1, pc2 and so on, so for instance

c l 2 <− i n i t c l s (c (”pc28” , ”pc29”))

would set up a two-node snow run.

In any case, in the above default call to makeCluster(), communication
between the manager and the workers is done via network sockets, even if
we are on a multicore machine.

Now, let’s take a closer look at mutoutpar(), first the call

c lu s t e rExpor t (c l s , ” lnks ”)

This sends our data matrix lnks to all the workers in cls.

An important point to note is that clusterExport() by default requires
the transmitted data to be global in the manager’s work space. It is then
placed in the global work space of each worker (without any alternative
option offered). To meet this requirement, I made lnks global back when I
created this data in snowsim(), using the superassignment operator <<−:

l nks <<− matrix (sample (0 : 1 , (nr∗nc) , replace=TRUE) ,
nrow=nr)

The use of global variables is rather controversial in the software develop-
ment world. In my book The Art of R Programming (NSP, 2011), I address
some of the objections some programmers have to global variables, and ar-
gue that in many cases (especially in R), globals are the best (or least bad)
solution.

In any case, here the structure of clusterExport() basically forces us to
use globals. For the finicky, there is an option to use an R environment
instead of the manager’s global workspace. We could change the above call
with mutoutpar(), for instance, to

c lu s t e rExpor t (c l s , ” lnks ” , env i r=environment ())

The R function environment() returns the current environment, meaning
the context of code within mutoutpar(), in which lnks is a local variable.
But even then the data would still be global at the workers.

14 CHAPTER 1. INTRODUCTION

Here are the details of the clusterApply() call. Let’s refer to that second
argument of clusterApply(), in this case ichunks, as the “work assign-
ment” argument, as it parcels out work to workers.

To keep things simple in this introductory example, we have just a single i
value for each “chunk”:

ichunks <− 1 : (nr−1)
t o t s <− c lus te rApp ly (c l s , ichunks , doichunk)

(We’ll extend this to larger chunks in Section 3.2.1.)

Here clusterApply() will treat that ichunks vector as an R list of nr
- 1 elements. In the call to that function, we have the manager sending
ichunks[[1]] to cls[[1]], which is the first worker. Similarly, ichunks[[2]]
is sent to cls[[2]], the second worker, and so on.

Unless the problem is small (far too small to parallelize!), we will have more
chunks than workers here. The clusterApply() function handles this in
a Round Robin manner. Say we have 1000 chunks and 4 workers. After
clusterApply() sends the fourth chunk to the fourth worker, it starts over
again, sending the fifth chunk to the first worker, the sixth chunk to the
second worker, and so on, repeatedly cycling through the workers. In fact,
the internal code uses R’s recycling operation to implement this.

Each worker is told to run doichunk() on each chunk sent to that worker
by the manager. The second worker, for example, will call doichunk() on
ichunks[[2]], ichunks[[6]], etc.

So, each worker works on its assigned chunks, and returns the results—the
number of mutual outlinks discovered in the chunks—to the manager. The
clusterApply() function collects these results, and places them into an
R list. which we’ve assigned here to tots. That list will contain nr - 1
elements.

One might expect that we could then find the grand sum of all those totals
returned by the workers by simply calling R’s sum() function:

sum(t o t s)

This would have been fine if tots had been a vector, but it’s a list, hence
our use of R’s Reduce() function. Here Reduce() will apply the sum()
function to each element of the list tots, yielding the grand sum as desired.
You’ll find use of Reduce() common with functions in packages like snow,
which typically return values in lists.

This is a good time to point out that many parallel R packages require the

1.4. EXTENDED EXAMPLE: MUTUAL WEB OUTLINKS 15

user to be adept at using R lists. Our call to clusterApply(), returned a
list type, and in fact its second argument is usually an R list, though not
here.

This example has illustrated some of the major issues, but it has barely
scratched the surface. The next chapter will begin to delve deeper into this
many-faceted subject.

Chapter 2

“Why Is My Program So
Slow?”: Obstacles to
Speed

Here is an all-too-common scenario: An analyst acquires a brand new mul-
ticore machine, capable of wondrous things. With great excitement, he
codes up his favorite large problem on the new machine—only to find that
the parallel version runs more slowly than the serial one. What a disap-
pointment!

Though you are no doubt eager to get to some more code, a firm grounding
in the infrastructural issues will prove to be quite valuable indeed, hence
the need for this chapter. These issues will arise repeatedly in the rest of
the book. If you wish, you could skip ahead to the other chapters now, and
come back to this one as the need arises, but it’s better if you go through
it now. So, let’s see what factors can lead to such a situation in which our
hapless analyst above sees his wonderful plans go awry.

2.1 Obstacles to Speed

Let’s refer to the computational entities as processes, such as the workers
in the case of snow. There are two main performance issues in parallel
programming:

17

18 CHAPTER 2. OBSTACLES TO SPEED

• Communications overhead: Typically data must be transferred back
and forth between processes. This takes time, which can take quite a
toll on performance.

In addition, the processes can get in each other’s way if they all try to
access the same data at once. They can collide when trying to access
the same communications channel, the same memory module, and so
on. This is another sap on speed.

The term granularity is used to refer, roughly, to the ratio of computa-
tion to overhead. Large-grained or coarse-grained algorithms involve
large enough chunks of computation that the overhead isn’t much of a
problem. In fine-grained algorithms, we really need to avoid overhead
as much as possible.

• Load balance: As noted in the last chapter, if we are not careful in
the way in which we assign work to processes, we risk assigning much
more work to some than to others. This compromises performance,
as it leaves some processes unproductive at the end of the run, while
there is still work to be done.

There are a number of issues of this sort that occur generally enough to be
collected into this chapter, as an “early warning” of issues that can arise.
This is just an overview, with details coming in subsequent chapters, but
being forewarned of the problems will make it easier to recognize them as
they are encountered.

2.2 Performance and Hardware Structures

Scorecards, scorecards! You can’t tell the players without the scorecards!—
old chant of scorecard vendors at baseball games

The foot bone connected to the ankle bone, The ankle bone connected to the
shin bone...—from the children’s song, “Dem Bones”

The reason our unfortunate analyst in the preceding section was surprised
that his code ran more slowly on the parallel machine was almost certainly
due to a lack of understanding of the underlying hardware and systems
software. While one certainly need not understand the hardware on an
electronics level, a basic knowledge of “what is connected to what” is es-
sential.

In this section, we’ll present overviews of the major hardware issues, and
of the two parallel hardware technologies the reader is mostly likely to

2.2. PERFORMANCE AND HARDWARE STRUCTURES 19

encounter, multiprocessors and clusters:1

• A multiprocessor system has, as the name implies, two or more pro-
cessors, i.e., two or more CPUs, so that two or more programs (or
parts of the same program) can be doing computation at the same
time. A multicore system, common in the home, is essentially a low-
end multiprocessor, as we will see later. Multiprocessors are also
known as shared-memory systems, since they indeed share the same
physical RAM.

These days, almost any home PC or laptop is at least dual core. If
you own such a machine, congratulations, you own a multiprocessor
system!

You are also to be congratulated for owning a multiprocessor system
if you have a fairly sophisticated video card in your computer, one
that can serve as a graphics processing unit. GPUs are specialized
shared-memory systems.

• A cluster consists of multiple computers, each capable of running
independently, that are networked together, enabling their engaging
in a concerted effort to solve a big numerical problem.

If you have a network at home, say with a wireless or wired router,
then congratulations, you own a cluster!2

I emphasize the “household item” aspect above, to stress that these are not
esoteric architectures, though of course scale can vary widely from what
you have at home to far more sophisticated and expensive systems, with
quite a bit in between.

The terms shared-memory and networked above give clues as to the ob-
stacles to computational speed that arise, which are key. So, we will first
discuss the high-level workings of these two hardware structures, in Sections
2.3 and 2.4.

We’ll then explain how they apply to the overhead issue with our two basic
platform types, multicore (Section 2.5.1.1) and cluster (Section 2.5.1.2).
We’ll cover just enough details to illustrate the performance issues discussed
later in this chapter, and return for further details in later chapters.

1What about clouds? A cloud consists of multicore machines and clusters too, but
operating behind the scenes.

2It should be noted that in the case of large clusters used for intensive computation,
one generally must install software for the purpose of controlling which program runs on
which machines. But your two-node home system is still a cluster.

20 CHAPTER 2. OBSTACLES TO SPEED

2.3 Memory Basics

Slowness of memory access is one of the most common issues arising in
high-performance computing. Thus a basic understanding of memory is
vital.

Consider an ordinary assignment statement, copying one variable (a single
integer, say) to another:

y = x

Typically, both x and y will be stored somewhere in memory, i.e., RAM
(Random Access Memory). Memory is broken down into bytes, designed
to hold one character, and words, usually designed to contain one number.
A byte consists of eight bits, i.e., eight 0s and 1s. On typical computers
today, the word size is 64 bits, or eight bytes.

Each word has an ID number, called an address. (Individual bytes have
addresses too, but this will not concern us here.) So the compiler (in the
case of C/C++/FORTRAN) or the interpreter (in the case of a language
like R), will assign specific addresses in memory at which x and y are to be
stored. The above assignment will be executed by the machine’s copying
one word to the other.

A vector will typically be stored in a set of consecutive words. This will be
the case for matrices too, but there is a question as to whether this storage
will be row-by-row or column-by-column. C/C++ uses row-major order:
First all of the first row (called row 0) is stored, then all of the second row,
and so on. R and FORTRAN use column-major order, storing all of the
first column (named column 1) etc. So, for instance, if z is a 5×8 matrix in
R, then z[2,3] will be in the 12th word (5+5+2) in the portion of memory
occupied by z. These considerations will affect performance, as we will see
later.

Memory access time, even though measured in tens of nanoseconds—billionths
of a second—is slow relative to CPU speeds. This is due not only to elec-
tronic delays within the memory chips themselves, but also due to the fact
that the pathway to memory is often a bottleneck. More on this below.

2.3.1 Caches

A device commonly used to deal with slow memory access is a cache. This
is a small but fast chunk of memory that is located on or near the processor

2.3. MEMORY BASICS 21

chip. For this purpose, memory is divided into blocks, say of 64 bytes each.
Memory address 1200, for instance, would be in block 18, since 1200/64 is
equal to 18 plus a fraction. (The first block is called Block 0.)

The cache is divided into lines, each the size of a memory block. At any
given time, the cache contains local copies of some blocks of memory, with
the specific choice of blocks being dynamic—at some times the cache will
contain copies of some memory blocks, while a bit later it may contain
copies of some other blocks.3

If we are lucky, in most cases, the memory word that the processor wishes
to access (i.e., the variable in the programmer’s code she wishes to access)
already has a copy in its cache—a cache hit. If this is a read access (of
x in our little example above), then it’s great—we avoid the slow memory
access.

On the other hand, in the case of a write access (to y above), if the requested
word is currently in the cache, that’s nice too, as it saves us the long trip to
memory (if we do not “write through” and update memory right away, as
we are assuming here). But it does produce a discrepancy between the given
word in memory and its copy in the cache. In the cache architecture we are
discussing here, that discrepancy is tolerated, and eventually resolved when
the block in question is “evicted,” as we will see below. (With a multicore
machine, cache operation becomes more complicated, as typically each core
will have its own cache, thus potentially causing severe discrepancies. This
will be discussed in Section 2.5.1.1.)

If in a read or write access the desired memory word is not currently in the
cache, this is termed a cache miss. This is fairly expensive. When it occurs,
the entire block containing the requested word must be brought into the
cache. In other words, we must access many words of memory, not just one.
Moreover, usually a block currently in the cache must be evicted to make
room for the new one being brought in. If the old block had been written
to at all, we must now write that entire block back to memory, to update
the latter.4

So, though we save memory access time when we have a cache hit, we incur
a substantial penalty at a miss. Good cache design can make it so that
the penalty is incurred only rarely. When a read miss occurs, the hardware
makes “educated guesses” as to which blocks are least likely to be needed
again in the near future, and evicts one of these. It usually guesses well, so

3What follows below is a description of a common cache design. There are many
variations, not discussed here.

4There is a dirty bit that records whether we’ve written to the block, but not which
particular words were affected. Thus the entire block must be written.

22 CHAPTER 2. OBSTACLES TO SPEED

that cache hit rates are typically well above 90%. Note carefully, though,
that this can be affected by the way we code. This will be discussed in
future chapters.

A machine will typically have two or more levels of cache. The one in or
next to the CPU is called the L1, or Level 1 cache. Then there may be an
L2 cache, a “cache for the cache.” If the desired item is not found in the L1
cache, the CPU will then search the L2 cache before resorting to accessing
the item in memory.

2.3.2 Virtual Memory

Though it won’t arise much in our context, we should at least briefly dis-
cuss virtual memory. Consider our example above, in which our program
contained variables x and y. Say these are assigned to addresses 200 and
8888, respectively. Fine, but what if another program is also running on the
machine? The compiler/interpreter may have assigned one of its variables,
say g, to address 200. How do we resolve this?

The standard solution is to make the address 200 (and all others) only
“virtual.” It may be, for instance, that x from the first program is actually
stored in physical address 7260. The program will still say x is at word
200, but the hardware will translate 200 to 7260 as the program executes.
If g in the second program is actually in word 6548, the hardware will
replace 200 by 6548 every time the program requests access to word 200.
The hardware has a table to do these lookups, one table for each program
currently running on the machine, with the table being maintained by the
operating system.

Virtual memory systems break memory into pages, say of 4096 bytes each,
analogous to cache blocks. Usually, only some of your program’s pages are
resident in memory at any given time, with the remainder of the pages out
on disk. If your program needs some memory word not currently resident—
a page fault, analogous to a cache miss—the hardware senses this, and
transfers control to the operating system. The OS must bring in the re-
quested page from disk, an extremely expensive operation in terms of time,
due to the fact that a disk drive is mechanical rather than electronic like
RAM.5 Thus page faults can really slow down program speed, and again as
with the cache case, you may be able to reduce page faults through careful
design of your code.

5Some more expensive drives, known as Solid State Drives (SSDs), are in fact elec-
tronic.

2.4. NETWORK BASICS 23

2.3.3 Monitoring Cache Misses and Page Faults

Both cache misses and page faults are enemies of good performance, so it
would be nice to monitor them.

This actually can be done in the case of page faults. As noted, a page
fault triggers a jump to the OS, which can thus record it. In Unix-family
systems, the time command gives not only run time but also a count of
page faults.

By contrast, cache misses are handled purely in hardware, thus not record-
able by the OS. But one might try to gauge the cache behavior of a program
by using the number of page faults as a proxy. There are also simulators,
such as valgrind, which can be used to measure cache performance.

2.3.4 Locality of Reference

Clearly, the effectiveness of caches and virtual memory depend on repeat-
edly using items in the same blocks (spatial locality) within short time pe-
riods (temporal locality). As mentioned earlier, this in turn can be affected
to some degree by the way the programmer codes things.

Say we wish to find the sum of all elements in a matrix. Should our code
traverse the matrix row-by-row or column-by-column? In R, for instance,
which as mentioned stores matrices in column-major order, we should go
column-by-column, to get better locality.

A detailed case study on cache behavior will be presented in Section 5.8.

2.4 Network Basics

A single Ethernet (or other similar system), say within a building, is called
a network. The Internet is simply the interconnection of many networks–
millions of them.

Say you direct the browser on your computer to go to the Cable Network
News (CNN) home page, and you are located in San Francisco. Since CNN
is headquartered in Atlanta, packets of information will go from San Fran-
cisco to Atlanta. (Actually, they may not go that far, since Internet service
providers (ISPs) often cache Web pages, but let’s suppose that doesn’t
occur.) Actually, a packet’s journey will be rather complicated:

24 CHAPTER 2. OBSTACLES TO SPEED

• Your browser program will write your Web request to a socket. The
latter is not a physical object, but rather a software interface from
your program to the network.

• The socket software will form a packet from your request, which will
then go through several layers of the network protocol stack in your
OS. Along the way, the packet will grow, as more information is being
added, but also it will split into multiple, smaller packets.

• Eventually the packets will reach your computer’s network interface
hardware, from which they go onto the network.

• A gateway on the network will notice that the ultimate destination is
external to this network, so the packets will be transferred to another
network that the gateway is also attached to.

• Your packets will wend their way across the country, being sent from
one network to the next.6

• When your packets reach a CNN computer, they will now work their
way up the levels of the OS, finally reaching the Web server program.

2.5 Latency and Bandwidth

Getting there is half the fun—old saying, regarding the pleasures of traveling

The speed of a communications channel—whether between processor cores
and memory in shared-memory platforms, or between network nodes in a
cluster of machines—is measured in terms of latency, the end-to-end travel
time for a single bit, and bandwidth, the number of bits per second that we
can pump onto the channel.

To make the notions a little more concrete, consider the San Francisco Bay
Bridge, a long, multilane structure for which westbound drivers pay a toll.
The notion of latency would describe the time it takes for a car to drive
from one end of the bridge to the other. (For simplicity, assume they all go
the same speed.) By contrast, the bandwidth would be the number of cars
exiting from the toll booths per unit time. We can reduce the latency by
raising the speed limit on the bridge, while we could increase the bandwidth
by adding more lanes and more toll booths.

6Run the traceroute command on your machine to see the exact path, though this
can change over time.

2.5. LATENCY AND BANDWIDTH 25

The network time in seconds to send an n-byte message, with a latency of
l seconds and a bandwidth of b bytes/second, is clearly

l + n/b (2.1)

Of course, this assumes that there are no other messages contending for the
communication channel.

Clearly there are numerous delays in networks, including the less-obvious
ones incurred in traversing the layers of the OS. Such traversal involves
copying the packet from layer to layer, and in cases of interest in this book,
such copying can involve huge matrices and thus take a lot of time.

Though parallel computation is typically done within a network rather than
across networks as above, many of those delays are still there. So, network
speeds are much, much lower than processor speeds, both in terms of latency
and bandwidth.

The latency in even a fast network such as Infiniband is on the order of
microseconds, i.e., millionths of a second, which is eons compared to the
nanosecond level of execution time for a machine instruction in a processor.
(Beware of a network that is said to be fast but turns out only to have high
bandwidth, not also low latency.)

Latency and bandwidth issues arise in shared-memory systems too. Con-
sider GPUs, for instance. In most applications, there is a lot of data trans-
fer between the CPU and the GPU, with attendant potential for slowdown.
Latency, for example, is the time for a single bit to go from the CPU to the
GPU, or vice versa.

One way to ameliorate the slowdown from long latency delays is latency
hiding. The basic idea is to try to do other useful work while a communi-
cation having long latency is pending. This approach is used, for instance,
in the use of nonblocking I/O in message-passing systems (Section 8.7.1) to
deal with network latency, and in GPUs (Chapter 6) to deal with memory
latency.

2.5.1 Two Representative Hardware Platforms: Mul-
ticore Machines and Clusters

Multicore machines have become standard on the desktop (even in the cell
phone!), and many data scientists have access to computer clusters. What
are the performance issues on these platforms? The next two sections

26 CHAPTER 2. OBSTACLES TO SPEED

Figure 2.1: Symmetric Multiprocsssor System

provide an overview.

2.5.1.1 Multicore

A symmetric multiprocessor system looks something like Figure 2.1 in terms
of components and, most importantly, their interconnection. What do we
see?

• There are processors, depicted by the Ps, in which your program is
physically executed.

• There are memory banks, the Ms, in which your program and data
reside during execution.7

• The processors and memory banks are connected to a bus, a set of
parallel wires used for communication between these computer com-
ponents.

Your input/output hardware—disk drives, keyboards and so on—are also
connected to the bus, and there may actually be more than one bus, but
our focus will be mainly on the processors and memory.

A threaded program will have several instantiations of itself, called threads,
that are working in concert to achieve parallelism. They run independently,
except that they share the data of the program in common. If your program
is threaded, it will be running on several of the processors at once, each
thread on a different core. A key point, as we will see, is that the shared

7These were called banks in the old days. Later the term modules became more
popular, but with the recent popularity of GPUs, the word banks has come back into
favor.

2.5. LATENCY AND BANDWIDTH 27

memory becomes the vehicle for communication between the various pro-
cesses.

Your program consists of a number of machine language instructions. (If
you write in an interpreted language such as R, the interpreter itself consists
of such instructions.) As the processors execute your program, they will
fetch the instructions from memory.

As noted earlier, your data—the variables in your program—is stored in
memory. The machine instructions fetch the data from memory as needed,
so that it can be processed, e.g., summed, in the processors.

Until recently, ordinary PCs sold at your local electronics store followed
the model in Figure 2.1 but with only one P. Multiprocessor systems en-
abled parallel computation, but cost hundreds of thousands of dollars. But
then it became standard for systems to have a multicore form. This means
that there are multiple Ps, but with the important distinction that they
are all on a single chip (each P is one core), making for inexpensive sys-
tems.8 Whether on a single chip or not, having multiple Ps sets up parallel
computation, and is known as the shared-memory paradigm, for obvious
reasons.

By the way, why are there multiple Ms in Figure 2.1? To improve memory
performance, the system is set up so that memory is partitioned into several
banks (typically there are the same number of Ms as Ps). This enables
us to not only do computation on a parallel basis—several Ps working on
different pieces of a problem in parallel—but also to do memory access
in parallel—several memory accesses being active in parallel, in different
banks. This amortizes the memory access penalty. Of course, if more than
one P happens to need to access the same M at about the same time, we
lose this parallelism.

As you can see, a potential bottleneck is the bus. When more than one P
needs to access memory at a time, even if to different banks, attempting
to place memory access requests on the bus, all but one of them will need
to wait. This bus contention can cause significant slowdown. Much more
elaborate systems, featuring multiple communications channels to memory
rather than just a bus, have also been developed and serve to ameliorate
the bottleneck issue. Most readers of this book, however, are more likely
to use a multicore system on a single memory bus.

You can see now why efficient memory access is such a crucial factor in
achieving high performance. There is one more tool to handle this that is

8Terminology is not standardized, unfortunately. It is common to refer to that chip
as “the” processor, even though there actually are multiple processors inside.

28 CHAPTER 2. OBSTACLES TO SPEED

vital to discuss here: Use of caches. Note the plural; in Figure 2.1, there is
usually a C in between each P and the bus.

As with uniprocessor systems, caching can bring a big win in performance.
In fact, the potential is even greater with a multiprocessor system, since
caching will now bring the additional benefit of reducing bus contention.
Unfortunately, it also produces a new problem, cache coherency, as follows.9

Consider what happens upon a write hit, i.e., a write to a location for which
a local cache copy exists. For instance, consider code such as

x = 28 ;

with x having address 200. This code might be executed at a time when
there is a copy of word 200 in that processor’s cache. The problem is that
other caches may also have a copy of this word, so they are now invalid
for that block. (Recall that validity is defined only at the block level; if all
words in a block but one are valid, the whole block is considered invalid.)
The hardware must now inform those other caches that their copies of this
block are invalid.

The hardware does so via the bus, thus incurring an expensive bus opera-
tion. Moreover, the next time this word (or for that matter, any word in
this block) is requested at one of the other caches, there will be a cache
miss, again an expensive event.

Once again, proper coding on the programmer’s part can sometimes ame-
liorate the cache coherency problem.

A final point on multicore structure: Even on a uniprocessor machine, one
generally has multiple programs running concurrently. You might have your
browser busy downloading a file, say, while at the same time you are using a
photo processing application. With just a single processor, these programs
will actually take turns running; each one will run for a short time, say 50
milliseconds, then hand off the processor to the next program, in a cyclic
manner. (You as the user probably won’t be aware of this directly, but you
may notice the system as a whole slowing down.) Note by the way that if a
program is doing a lot of input/output (e.g., file access), it is effectively idle
during I/O times; as soon as it starts an I/O operation, it will relinquish
the processor.

By contrast, on a multicore machine, you can have multiple programs run-
ning physically simultaneously (though of course they will still take turns
if there are more of them than there are cores).

9As noted earlier, there are variations of the structure described here, but this one is
typical.

2.6. THREAD SCHEDULING 29

2.5.1.2 Clusters

These are much simpler to describe, though with equally thorny perfor-
mance obstacles.

The term cluster simply refers to a set of independent processing elements
(PEs) or nodes that are connected by a local area network, such as the
common Ethernet or the high-performance Infiniband. Each PE consists
of a CPU and some RAM. The PE could be a full desktop computer,
including keyboard, disk drive and monitor, but if it is used primarily for
parallel computation, then just one monitor, keyboard and so on suffice for
the entire system. A cluster may also have a special operating system, to
coordinate assigning of user programs to PEs.

We will have one computational process per PE (unless each PE is a multi-
core system, as is common). Communication between the processes occurs
via the network. The latter aspect, of course, is where the major problems
occur.

2.5.2 The Principle of “Just Leave It There”

All of these considerations regarding latency and bandwidth means, among
other things, that data copying is often the enemy of speed. This is partic-
ularly true for high-latency platforms such as clusters and GPUs.

In such a situation, it may be crucial to design the algorithm to minimize
copying. With an iterative algorithm, for instance, be sure to leave inter-
mediate results on the remote nodes in the cluster case, and in the GPU
memory in that setting, if possible.

2.6 Thread Scheduling

Say you have a threaded program, for example with four threads and a
machine with four cores. Then the four threads will run physically simul-
taneously (if there are no other programs competing with them). That of
course is the entire point, to achieve parallelism, but there is more to it
than that.

Modern operating systems for general-purpose computers use timesharing:
Unseen by the users, programs are taking turns (timeslices) using the cores
of the machine. Say for instance that Manny and Moe are using a university

30 CHAPTER 2. OBSTACLES TO SPEED

computer named Jack, with Manny sitting at the console and Moe logged in
remotely. For concreteness, say Manny is running an R program, and Moe
is running something in Python, with both currently having long-running
computations in progress.

Assume first that this is a single-core machine. Then only one program
can run at a time. Manny’s program will run for a while, but after a set
amount of time, the hardware timer will issue an interrupt, causing a jump
to another program. That program has been configured to be the operating
system. The OS will look on its process table to find another program in
ready state, meaning runnable (as opposed to say, suspended while awaiting
keyboard input). Assuming there are no other processes, Moe’s program
will now get a turn. This transition from Manny to Moe is called a context
switch. Moe’s program will run for a while, then another interrupt comes,
and Manny will get another turn, and so on.

Now suppose it is a dual-core machine. Here Manny and Moe’s programs
will run more or less continuously, in parallel, though with periodic down-
times due to the interrupts and attendant brief OS runs.

But suppose Moe’s code is threaded, running two threads. Now we will have
three threads—Moe’s two and Manny’s one (even a non-threaded program
consists of one thread)—competing to use three cores. Moe’s two threads
will sometimes run in parallel with each other but sometimes not. Instead
of a 2X speedup, Moe is getting about 1.5X.10

There are also possible cache issues. When a thread starts a new turn, it
may be on a different core than that used in the last turn. If there is a
separate cache for each core, the cache as the new core probably contains
little if anything useful to this thread. Thus there will be a lot of cache
misses for a while in this timeslice. There may be a remedy in the form of
setting processor affinity; see Section 5.9.4.

By the way, what happens when one of those programs finishes its com-
putation and returns to the user prompt, e.g., > in the case of Manny’s
R program? R will then be waiting for Manny’s keyboard input. But the
OS won’t wait, and the OS does in fact get involved. R is trying to read
from the keyboard, and to do this it calls a C library function, which in
turn makes a call to a function in the OS. The OS, realizing that it may be
quite a while before Manny types, will mark his entry in the process table
as being in sleep state. When he finally does hit a key, the keyboard sends
an interrupt,11 causing the OS to run, and the latter will mark his program
as now being back in ready state, and it will eventually get another turn.

10Even the 2X figure assumes that Moe’s code was load balanced in the first place,
which may not be the case.

11In Moe’s case, the interrupt will come from Jack’s network card.

2.7. HOW MANY PROCESSES/THREADS? 31

2.7 How Many Processes/Threads?

As mentioned earlier, it is customary in the R world to refer to each worker
in a snow program as a process. A question that then arises is, how many
processes should we run?

Say for instance we have a cluster of 16 nodes. Should we set up 16 workers
for our snow program? The same issues arise with threaded programs,
say with Rdsm or OpenMP (Chapters 4 and 5). On a quadcore machine,
should we run 4 threads?

The answer is not automatically Yes to these questions. With a fine-grained
program, using too many processes/threads may actually degrade perfor-
mance, as the overhead may overwhelm the presumed advantage of throw-
ing more hardware at the problem. So, one might actually use fewer cluster
nodes or fewer cores than one has available.

On the other hand, one might try to oversubscribe the resources. As dis-
cussed earlier, a cache miss causes a considerable delay, and a page fault
even more. This is time during which one of the nodes/cores will not be
doing any computation, exacting an opportunity cost from performance. It
may pay, then, to have “extra” threads for the program available to run.

2.8 Example: Mutual Outlink Problem

To make this concrete, let’s measure times for the mutual outlinks problem
(Section 1.4), with larger and larger numbers of processes.

Here I ran on a shared-memory machine consisting of four processor chips,
each of which has eight cores. This gives us a 32-core system, and I ran
the mutual outlinks problem with values of nc, the number of cores, equal
to 2, 4, 6, 8, 10, 12, 16, 24, 28 and 32. The problem size was 1000 rows by
1000 columns. The times are plotted in Figure 2.2.

Here we see a classical U-shaped pattern: As we throw more and more
processes on the problem, it helps in the early stages, but performance
actually degrades after a certain point. The latter phenomenon is probably
due to the communications overhead we discussed earlier, in this case bus
contention and the like.12

12Though the processes are independent and do not share memory, they do share the
bus.

32 CHAPTER 2. OBSTACLES TO SPEED

Figure 2.2: Run Time Versus Number of Cores

By the way, for each of our nc workers, we had one invocation of R running
on the machine. There was also an additional invocation, for the manager.
However, this is not a performance issue in this case, as the manager spends
most of its time idle, waiting for the workers.

2.9 “Big O” Notation

With all this talk of physical obstacles to overcome, such as memory access
time, it’s important also to raise the question as to whether the application
itself is very parallelizable in the first place. One measure of that is “big
O” notation.

In our mutual outlinks example with an n × n adjacency matrix, we need
to do on average n/2 sum operations per row, with n rows, thus n · n/2
operations in all. In parallel processing circles, the key question asked about
hardware, software, algorithms and so on is, “Does it scale?”, meaning,
Does the run time grow manageably as the problem size grows?

2.10. DATA SERIALIZATION 33

We see above that the run time of the mutual outlinks problem grows
proportionally to the square of the problem size, in this case the number of
websites. (Dividing by 2 doesn’t affect this growth rate.) We write this as
O(n2), known colloquially as “big O” notation. When applied to analysis
of run time, we say that it measures the time complexity.

Ironically, applications that are manageable often are poor candidates for
parallel processing, due to overhead playing a greater role in such problems.
An application with O(n) time complexity, for instance, may present a
challenge. We will return to this notion at various points in this book.

2.10 Data Serialization

Some parallel R packages, e.g., snow, that send data through a network
serialize the data, meaning to convert it to ASCII form. The data must
then be unserialized on the receiving end. This creates a delay, which may
or may not be serious but must be taken into consideration.

2.11 “Embarrassingly Parallel” Applications

The term embarrassingly parallel is heard often in talk about parallel pro-
gramming. It is a central topic, hence deserving of having a separate section
devoted to it.

2.11.1 What People Mean by “Embarrassingly Paral-
lel”

It’s no shame to be poor...but it’s no great honor either—the character
Tevye in Fiddler on the Roof

Consider a matrix multiplication application, for instance, in which we
compute AX for a matrix A and a vector X. One way to parallelize this
problem would be to have each processor handle a group of rows of A,
multiplying each by X in parallel with the other processors, which are
handling other groups of rows. We call the problem embarrassingly parallel,
with the word “embarrassing” meaning that the problem is too easy, i.e.,
there is no intellectual challenge involved. It is pretty obvious that the
computation Y = AX can be parallelized very easily by splitting the rows
of A into groups.

34 CHAPTER 2. OBSTACLES TO SPEED

By contrast, most parallel sorting algorithms require a great deal of inter-
action. For instance, consider Mergesort. It breaks the vector to be sorted
into two (or more) independent parts, say the left half and right half, which
are then sorted in parallel by two processes. So far, this is embarrassingly
parallel, at least after the vector is broken in half. But then the two sorted
halves must be merged to produce the sorted version of the original vector,
and that process is not embarrassingly parallel; it can be parallelized, but
in a more complex, less obvious manner.

Of course, it’s no shame to have an embarrassingly parallel problem! On the
contrary, except for showoff academics, having an embarrassingly parallel
application is a cause for celebration, as it is easy to program.

In recent years, the term embarrassingly parallel has drifted to a somewhat
different meaning. Algorithms that are embarrassingly parallel in the above
sense of simplicity tend to have very low communication between processes,
key to good performance. That latter trait is the center of attention nowa-
days, so the term embarrassingly parallel generally refers to an algorithm
with low communication needs.

2.11.2 Suitable Platforms for Non-Embarrassingly Par-
allel Applications

The only general-purpose parallel computing platform suitable for non-
embarrassingly parallel applications is that of the multicore/multiprocessor
system. This is due to the fact that processor/memory copies have the least
communication overhead. Note carefully that this does not mean there is
NO overhead—if a cache coherency transaction occurs, we pay a heavy
price. But at least the “base” overhead is small.

Still, non-embarrassingly parallel problems are generally tough nuts to
crack. A good, commonplace example is linear regression analysis. Here a
matrix inversion or equivalent such as QR factorization, is tough to paral-
lelize. We’ll return to this issue frequently in this book.

Chapter 3

Principles of Parallel Loop
Scheduling

Many applications of parallel programming, both in R and in general, in-
volve the parallelization of for loops. As will be explained shortly, this at
first would seem to be a very easily programmed class of applications, but
there can be serious performance issues.

First, though, let’s define the class under consideration. Throughout this
chapter, it will be assumed that the iterations of a loop are independent of
each other, meaning that the execution of one iteration does not use the
results of a previous one.

Here is an example of code that does not satisfy this condition:

t o t a l <− 0
for (i in 1 : n) t o t a l <− t o t a l + x [i]

Putting aside the fact that this computation can be done with R’s sum()
function, the point is that for each i, the computation needs the previous
value of total.

With this restriction of independent iterations, it would seem that we have
an embarrassingly parallel class of applications. In terms of programma-
bility, it is true. Using snow, for example in the mutual Web links code in
Section 1.4.5, we simply called clusterApply() on the range of i that we
had had in our serial loop:

ichunks <− 1 : (nr−1)

35

36 CHAPTER 3. SCHEDULING

t o t s <− c lus te rApp ly (c l s , ichunks , doichunk)

This distributed the various iterations for execution by the workers. So,
isn’t it equally simple for any for loop?

The answer is No, because different iterations may have widely different
times. If we are not careful, we can end up with a serious load balance
issue. In fact, this was even the case in the mutual Web links code above—
for larger values of i, the function doichunk() has less work to do: In the
(serial) code in Listing 1.4.1, page 6, the matrix multiplication involves a
matrix with n-i rows at iteration i.

This can cause big load balancing problems if we are not careful as to
how we assign iterations to workers, i.e., how we do the loop scheduling.
Moreover, we typically don’t know the loop iteration times in advance, so
the problem of efficient loop scheduling is even more difficult. Methods to
address these issues will be the thrust of this chapter.

3.1 General Notions of Loop Scheduling

Suppose we have k processes and many loop iterations. Suppose too that
we do not know beforehand how much time each loop iteration will take.
Common types of loop scheduling are the following:

• Static scheduling: The assignment of loop iterations to processes is
arranged before execution starts.

• Dynamic scheduling: The assignment of loop iterations to processes
is arranged during execution. Each time a process finishes a loop
iteration, it picks up a new one (or several, with chunking) to work
on.

• Chunking: Assign a group of loop iterations to a process, rather than
a single loop iteration. In dynamic scheduling, say, when a process
becomes idle, it picks up a group of loop iterations to work on next.

• Reverse scheduling: In some applications, the execution time for an
iteration grows larger as the loop index grows. For reasons that will
become clear below, it is more efficient to reverse the order of the
iterations.

Note that while static and dynamic scheduling are mutually exclusive, one
can do chunking and reverse scheduling with either.

3.1. GENERAL NOTIONS OF LOOP SCHEDULING 37

To make this concrete, suppose we have loop iterations A, B and C, and
have two processes, P1 and P2. Consider two loop schedules:

• Schedule I: Dole out the loop iterations in Round Robin, i.e., cyclic
order—assign A to P1, B to P2 and C to P1, statically..

• Schedule II: Dole out the loop iterations dynamically, one at a time,
as execution progresses. Let us suppose we do this in reverse order,
i.e., C, B and A, because we suspect that their loop iteration times
decrease in this order. (The relevance of this will be seen below.)

Now suppose loop iterations A, B and C have execution times of 10, 20 and
40, respectively. Let’s see how early we would finish the full loop iteration
set, and how much wasted idleness we would have, under both schedules.

In Schedule I, when P1 finishes loop iteration A at time 10, it starts C,
finishing the latter at time 50. P2 finishes at time 20, and then sits idle
during time 20-50.

Under Schedule II, there may be some randomness in terms of which of
P1 and P2 gets loop iteration C. Say it is P1. P1 will execute only loop
iteration C, never having a chance to do more. P2 will do B, then pick
up A and perform that loop iteration. The overall loop iteration set will
be completed at time 40, with only 10 units of idle time. In other words,
Schedule II outperforms Schedule I, both in terms of how soon we complete
the project and how much idle time we must tolerate.

By the way, note that a static version of Schedule II, still using the (C,B,A)
order, would in this case have the same poor performance as Schedule I.

There are two aspects, though, which we must consider:

• As mentioned earlier, typically we do not know the loop iteration
times in advance. In the above example, we had loop iterations in
Schedule II get their work in reverse order, due to a suspicion that C
would take the longest etc. That guess was correct (in this contrived
example), and placing our work queue in reverse order like that turned
out to be key to the superiority of Schedule II in this case.

• Schedule II, and any dynamic method, may exact a substantial over-
head penalty. In snow, for instance, there would need to be commu-
nication between a worker and the manager, in order for the worker to
determine which task is next assigned to it. Static scheduling doesn’t
have this drawback.

38 CHAPTER 3. SCHEDULING

This is the motivation for chunking in the dynamic case (though it
can be used in the static case too). By assigning loop iterations to
processes in groups instead of singly, processes need to go to the work
queue less often, thus accruing less overhead.

On the other hand, large chunk sizes potentially bring back the prob-
lem of load imbalance. The final chunk handled by each process may
begin at substantially different times from one process to another.
This results in some processes incurring idle time—exactly the prob-
lem dynamic scheduling was meant to ameliorate. Thus some schedul-
ing methods have been developed in which the chunk size decreases
over time, saving overhead early in the computation, but reducing the
possibility of substantial load imbalance near the end. (More on this
in Section 5.3.)

3.2 Chunking in snow

The snow package itself doesn’t provide a chunking capability. This is
easily handled on one’s own, though, which will be seen in our revised
version of our mutual outlinks code.

3.2.1 Example: Mutual Outlinks Problem

Only one line of the code from Section 1.4.5 will be changed, but for con-
venience let’s see it all in one piece:

doichunk <− function (ichunk) {
to t <− 0
nr <− nrow(lnks) # l n k s g l o b a l a t worker
for (i in ichunk) {

tmp <− l nks [(i +1): nr ,] %∗% l nks [i ,]
t o t <− to t + sum(tmp)

}
to t

}

mutoutpar <− function (c l s , l nks) {
nr <− nrow(lnks)
c lu s t e rExpor t (c l s , ” lnks ”)
ichunks <− c l u s t e r S p l i t (c l s , 1 : (nr−1))
t o t s <− c lus te rApp ly (c l s , ichunks , doichunk)

3.2. CHUNKING IN SNOW 39

Reduce (sum, t o t s) / nr
}

As before, our function mutoutpar() divides the i values into chunks, but
now they are real chunks, not one i value per chunk as before. It does so
via the snow function clusterSplit():

mutoutpar <− function (c l s , l nks) {
nr <− nrow(lnks) # l n k s g l o b a l a t manager
c lu s t e rExpor t (c l s , ” lnks ”)
ichunks <− c l u s t e r S p l i t (c l s , 1 : (nr−1))
t o t s <− c lus te rApp ly (c l s , ichunks , doichunk)
Reduce (sum, t o t s) / nr

}

So, what does clusterSplit() do? Say lnks has 500 rows and we have 4
workers. The goal here is to partition the row numbers 1,2,...,500 into 4
equal (or roughly equal) subsets, which will serve as the chunks of indices
for each worker to process. Clearly, the result should be 1-125, 126-250,
251-375 and 376-500, which will correspond to the values of i in the outer
for loop in our serial code, Listing 1.4.1. Worker 1 will process the outer
loop iterations for i = 1,2,...,125, and so on.

Let’s check this. To save space below, let’s try it on a smaller example,
1,2,...,50, on the cluster cls:

> c l u s t e r S p l i t (c l s , 1 : 5 0)
[[1]]
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13

[[2]]
[1] 14 15 16 17 18 19 20 21 22 23 24 25

[[3]]
[1] 26 27 28 29 30 31 32 33 34 35 36 37

[[4]]
[1] 38 39 40 41 42 43 44 45 46 47 48 49 50

The call to clusterSplit() returned a list with 4 elements, each of which
is a vector showing the indices to be processed by a given worker. It did
work as expected. Since 50 is not divisible by 4, snow gave me subsets of
sizes 13, 12, 12 and 13. The function tries to make the subsets as evenly
divided as possible.

40 CHAPTER 3. SCHEDULING

So, again thinking of the case of 500 rows and 4 workers, the code

ichunks <− c l u s t e r S p l i t (c l s , 1 : (nr−1))
t o t s <− c lus te rApp ly (c l s , ichunks , doichunk)

will send the chunk 1:125 to the first worker, 126:250 to the second, 251:375
to the third, and 375:499 to the fourth. The return list, assigned to tots,
will now consist of four elements, rather than 499 as before.

Again, the only change from the previous version of this code was to add
real chunks. This ought to help, because it allows us to better leverage
the fact that R can do matrix multiplication fairly quickly. Let’s see if this
turns out to be the case. Here is a brief timing experiment using 8 cores
on our usual 32-core machine, on a 1000 × 1000 problem:

chunking? time
no 9.062

yes 6.264

Indeed, we got a speed improvement of about 30%.

3.3 A Note on Code Complexity

In general, chunking reduces overhead. This does also mean an increase in
code complexity in many cases, but it can be very much worthwhile. For
instance, in the example in Section 3.4.5, we find that a nonchunked version
runs more slowly than the serial code, while the chunked version has much
greater speed than the serial one.

Thus the code from here on will sometimes be more complex than what we
have seen before. The algorithms themselves are usually simple, but the
implementation often involves a lot of detail.

Welcome to the world of parallel programming! Working with details is a
fact of life for such programming. But as long as you keep your eye on the
big picture—the main points in the strategy in the design of the code—
you’ll have no trouble following the examples here, and more importantly,
writing your own code. You need not be a professional programmer to write
good parallel code; you simply need patience.

On a related note, the reader may be aware of the fact that for loops are
generally avoided by experienced R programmers. In some cases this is to
achieve better speed, but in others the goal is simply to write compact code,
which tends to be easier to read (though often less easy to write). But the

3.4. EXAMPLE: ALL POSSIBLE REGRESSIONS 41

reader should not hesitate to make liberal use of for loops when the main
advantage of non-loop code would be code compactness. In particular, use
of apply() typically does not bring a speed improvement, and though we
use it frequently in this book, the reader may prefer to stick with good
old-fashioned loops instead.

3.4 Example: All Possible Regressions

Consider linear regression analysis, one of the mainstays of statistical method-
ology. Here one tries to predict one variable from others.

A major issue is the choice of predictor variables: On the one hand, one
wants to include all relevant predictors in the regression equation. But on
the other hand, we must avoid overfitting, and complex models may be hard
to interpret. Thus a nice, compact, parsimonious equation is desirable.

Suppose we have n observations and p predictor variables. In the all possible
regressions method of variable selection, we fit regression models to each
possible subset of the p predictors, and choose the one we like best according
to some criterion. The one we’ll use in our example here is adjusted R2,
a (nearly) statistically unbiased estimator of the (population value of the)
traditional R2 criterion. In other words, we will choose for our model the
predictor set for which adjusted R2 is largest.

3.4.1 Parallelization Strategies

There are 2p possible models, so the amount of computation could be quite
large—a perfect place to use parallel computation. There are two possibil-
ities here:

(a) For each set of predictors, we could perform the regression compu-
tation for that set in parallel. For instance, all the processes would
work in concert in computing the model using predictors 2 and 5.

(b) We could assign a different collection of predictor sets to each pro-
cess, with the process then performing the regression computations
for those assigned sets. So, for example, one process might do the en-
tire computation for the model involving predictors 2 and 5, another
process would handle the model using predictors 8, 9 and 12, and so
on.

42 CHAPTER 3. SCHEDULING

Option (a) has problems. For a given set of m predictors, we must first com-
pute various sums of squares and products. Each sum has n summands, and
there are O(m2) sums, making for a computational complexity of O(nm2).
(Recall that this notation was introduced in Section 2.9.) Then a matrix
inversion (or equivalent operation, such as QR factorization) must be done,
with complexity O(m3).1

Unfortunately, matrix inversion is not an embarrassingly parallel operation,
and though many good methods have been developed, it is much easier here
to go the route of option (b). The latter is embarrassingly parallel, and in
fact involves a loop.

Below is a snow implementation of doing this in parallel. It finds the
adjusted R2 value for all models in which the predictor set has size at most
k. The user can opt for either static or dynamic scheduling, or reverse the
order of iterations, and can specify a (constant) chunk size.

3.4.2 The Code

r e g r e s s e s response v a r i a b l e Y column a g a i n s t
a l l p o s s i b l e s u b s e t s o f the Xi p r e d i c t o r v a r i a b l e s ,
with s u b s e t s i z e up through k ; r e t u r n s the
a d j u s t e d R−squared v a l u e f o r each s u b s e t

s c h e d u l i n g parameters :
#
s t a t i c (c l u s t e r A p p l y ())
dynamic (c lusterApplyLB ())
r e v e r s e the order o f the t a s k s
chunk s i z e (in dynamic case)

arguments :
c l s : Snow c l u s t e r
x : matrix o f p r e d i c t o r s , one per column
y : v e c t o r o f the response v a r i a b l e
k : max s i z e o f p r e d i c t o r s e t
r e v e r s e : TRUE means r e v e r s e the order
of the i t e r a t i o n s
dyn : TRUE means dynamic s c h e d u l i n g
c h u n k s i z e : s c h e d u l i n g chunk s i z e

1In the QR case, the complexity may be O(m2), depending on exactly what is being
computed.

3.4. EXAMPLE: ALL POSSIBLE REGRESSIONS 43

return v a l u e :
R matrix , showing a d j u s t e d R−squared va lues ,
indexed by p r e d i c t o r s e t

snowapr <− function (c l s , x , y , k , r e v e r s e=F,dyn=F,
chunks ize =1) {

require (p a r a l l e l)
p <− ncol (x)
genera te p r e d i c t o r s u b s e t s , an R l i s t ,
1 element f o r each p r e d i c t o r s u b s e t
al lcombs <− genal lcombs (p , k)
ncombs <− length (a l lcombs)
c lu s t e rExpor t (c l s , ” do1pset ”)
s e t up t a s k i n d i c e s
ta sk s <− i f (! r e v e r s e)

seq (1 , ncombs , chunks ize) else
seq (ncombs ,1 ,− chunks ize)

i f (!dyn) {
out <− c lus te rApp ly (c l s , tasks , dochunk , x , y ,

al lcombs , chunks ize)
} else {

out <− clusterApplyLB (c l s , tasks , dochunk , x , y ,
al lcombs , chunks ize)

}
each element o f out c o n s i s t s o f rows showing
adj . R2 and the i n d i c e s o f the p r e d i c t o r s e t
t h a t produced i t ; combine a l l t h o s e v e c t o r s
i n t o a matrix
Reduce (rbind , out)

}

genera te a l l nonempty s u b s e t s o f 1 . . p o f s i z e <= k ;
r e t u r n s an R l i s t , one element per p r e d i c t o r se t ,
in the form o f a v e c t o r o f i n d i c e s
genal lcombs <− function (p , k) {

al lcombs <− l i s t ()
for (i in 1 : k) {

tmp <− combn (1 : p , i)
a l lcombs <− c (al lcombs , m a t r i x t o l i s t (tmp , rc =2))

}
al lcombs

}

44 CHAPTER 3. SCHEDULING

e x t r a c t s rows (rc =1) or columns (rc =2) o f a matrix ,
producing a l i s t
m a t r i x t o l i s t <− function (rc ,m) {

i f (rc == 1) {
Map(function (rownum) m[rownum ,] , 1 : nrow(m))

} else Map(function (colnum) m[, colnum] , 1 : ncol (m))
}

p roc ess a l l t he p r e d i c t o r s e t s in the a l l combs
chunk whose f i r s t index i s p s e t s s t a r t
dochunk <− function (p s e t s s t a r t , x , y , al lcombs ,

chunks ize) {
ncombs <− length (a l lcombs)
l a s t t a s k <− min(p s e t s s t a r t+chunksize −1,ncombs)
t (sapply (a l lcombs [p s e t s s t a r t : l a s t t a s k] ,

do1pset , x , y))
}

f i n d the a d j u s t e d R−squared v a l u e s f o r the g iven
p r e d i c t o r s e t onepse t ; re turn v a l u e w i l l be the
adj . R2 value , f o l l o w e d by the p r e d i c t o r s e t
i n d i c e s , wi th 0 s as f i l l e r −−f o r convenience , a l l
v e c t o r s re turned by c a l l s to do1pse t () have
l e n g t h k+1; e . g . f o r k = 4 , (0 . 2 8 , 1 , 3 , 0 , 0) would
mean the p r e d i c t o r s e t c o n s i s t i n g o f columns 1 and
3 o f x , wi th an R2 v a l u e o f 0.28
do1pset <− function (onepset , x , y) {

slm <− summary(lm(y ˜ x [, onepset]))
n0s <− ncol (x) − length (onepset)
c (slm$adj . r . squared , onepset , rep (0 , n0s))

}

p r e d i c t o r s e t seems b e s t
snowtest <− function (c l s , n , p , k , chunks ize =1,

dyn=F, r v r s=F) {
gendata (n , p)
snowapr (c l s , x , y , k , rvrs ,dyn , chunks ize)

}

gendata <− function (n , p) {
x <<− matrix (rnorm(n∗p) , ncol=p)
y <<− x%∗%c (rep (0 . 5 , p)) + rnorm(n)

}

3.4. EXAMPLE: ALL POSSIBLE REGRESSIONS 45

3.4.3 Sample Run

Here is some sample output:

> snowtest(c8,100,4,2)

[,1] [,2] [,3] [,4] [,5]

[1,] 0.21941625 1 0 0 0

[2,] 0.05960716 2 0 0 0

[3,] 0.11090411 3 0 0 0

[4,] 0.15092073 4 0 0 0

[5,] 0.26576805 1 2 0 0

[6,] 0.35730378 1 3 0 0

[7,] 0.32840075 1 4 0 0

[8,] 0.17534962 2 3 0 0

[9,] 0.20841665 2 4 0 0

[10,] 0.27900555 3 4 0 0

Here simulated data of size n = 100 was generated, with p = 4 predictors
and a maximum predictor set size of k = 2. The highest adjusted R2 value
was about 0.36, for the model using predictors 1 and 3, i.e., columns 1 and
3 of x.

3.4.4 Code Analysis

As noted in Section 3.3, parallel code does tend to involve a lot of detail,
so it is important to keep in mind the overall strategy of the algorithm. In
the case at hand here, the strategy is as follows:

• The manager determines all the predictor sets of size up to k.

• The manager assigns each worker to handle specified predictor sets.

• Each worker calculates the adjusted R2 value for each of its assigned
predictor sets.

• The manager collects the results, and assembles them into a results
matrix. The ith row of the matrix shows the adjusted R2 values and
their associated predictor sets.

Note that our approach here is consistent with the discussion in Section
1.1, i.e., to have our code leverage the power of R: Each worker calls the R
linear model function lm().

46 CHAPTER 3. SCHEDULING

To understand the details, in the following continue to consider the case of
p = 4, k = 2. Also, suppose our chunk size is 2, and we have two workers.
We will use static, nonreverse scheduling.

3.4.4.1 Our Task List

Our main function snowapr() will first call genallcombs() which, as its
name implies, will generate all the combinations of predictor variables, one
combination per list element:

> genallcombs(4,2)

[[1]]

[1] 1

[[2]]

[1] 2

[[3]]

[1] 3

[[4]]

[1] 4

[[5]]

[1] 1 2

[[6]]

[1] 1 3

[[7]]

[1] 1 4

[[8]]

[1] 2 3

[[9]]

[1] 2 4

[[10]]

[1] 3 4

3.4. EXAMPLE: ALL POSSIBLE REGRESSIONS 47

For example, the last list element says that one of the combinations is (3,4),
corresponding to the model with predictors 3 and 4, i.e., columns 3 and 4
of x.

Thus, the list allcombs is our task list, one task per element of the list.

As mentioned, the basic idea is simple: We distribute these tasks, 10 of
them in this case, to the workers. Each worker then runs regressions on
each of its assigned combinations, and returns the results to the manager,
which coalesces them.

3.4.4.2 Chunking

Here we set up chunking, with the line

ta sk s <− seq (1 , ncombs , chunks ize)

In the above example, tasks will be (1,3,5,7,9). Our code will interpret
these numbers as the starting indices of the various chunks, with for exam-
ple 3 meaning the chunk starting at the third combination, i.e., the third
element of allcombs. Since our chunk size is 2 in this example, the chunk
will consist of the third and fourth combinations in allcombs: This chunk
will consist of two single-predictor models, one using predictor 3 and the
other using predictor 4.

3.4.4.3 Task Scheduling

Let us name our two workers P1 and P2, and suppose we use static schedul-
ing, the default for snow. The package implements scheduling in a Round
Robin manner. Recalling that our vector tasks is (1,3,5,7,9), we see that
1 will be assigned to P1, 3 will be assigned to P2, 5 will be assigned to P1,
and so on. Again, note that assigning 3 to P2, for instance, means that
combinations 3 and 4 will be handled by that worker, since our chunk size
is 2.

In our call to snowapr(), we would set chunksize to 2 and set dyn to
FALSE, as we are using static scheduling. We are not reversing the order
of tasks, so we set rvrs to FALSE.

In the dynamic case, at first the assignment will match the static case, with
P1 getting combinations 1 and 2, and P2 being assigned 3 and 4. After that,
though, things are unpredictable. The manager could assign combinations
5 and 6 to either P1 or P2, depending on which worker finishes its initial

48 CHAPTER 3. SCHEDULING

combinations first. It’s a “first come, first served” kind of setup. The
snow package includes a variant of clusterApply() that does dynamic
scheduling, named clusterApplyLB() (“LB” for “load balance”).

As seen in the toy example in Section 3.1, it may be advantageous to
schedule iterations in reverse order. This is requested by setting reverse
to TRUE. Since iteration times are clearly increasing in this application,
we should consider using this option.

3.4.4.4 The Actual Dispatching of Work

That brings us to the heart of the code, the snow call

out <− c lus te rApp ly (c l s , tasks , dochunk , x , y , al lcombs ,
chunks ize)

(and the paired call to clusterApplyLB(), which works the same way).
As mentioned, tasks will be (1,3,5,7,9), each element of which will be fed
into the function dochunk() by a worker. P1, as noted, will do this for the
elements 1, 5 and 9, resulting in three calls to dochunk() being made by
P1. In those calls, psetsstart will be set to 1, 5 and 9, respectively.

Note that we’ve written our function dochunk() to have five arguments.
The first one will come from a portion of tasks, as explained above. The
value of that argument will be different for each worker. But the other four
arguments will be taken from the items that follow dochunk in the call

out <− c lus te rApp ly (c l s , tasks , dochunk , x , y , al lcombs ,
chunks ize)

The values of these arguments will be the same for all workers. The snow
function clusterApply() is structured this way, i.e., with all arguments
following the worker function (dochunk() in this case) being assigned in
common by all workers.

For convenience, here is a copy of the code of relevance right now:

dochunk <− function (p s e t s s t a r t , x , y , al lcombs ,
chunks ize) {

ncombs <− nrow(a l lcombs)
l a s t t a s k <− min(p s e t s s t a r t+chunksize −1,ncombs)
t (sapply (a l lcombs [p s e t s s t a r t : l a s t t a s k] ,

do1pset , x , y))
}

3.4. EXAMPLE: ALL POSSIBLE REGRESSIONS 49

do1pset <− function (onepset , x , y) {
slm <− summary(lm(y ˜ x [, onepset]))
n0s <− ncol (x) − length (onepset)
c (slm$adj . r . squared , onepset , rep (0 , n0s))

}

And here again is (part of) what we found earlier for allcombs:

[[1]]
[1] 1

[[2]]
[1] 2

[[3]]
[1] 3
. . .

Let’s look at what happens when P1 calls dochunk() on the 1 element,
i.e., with psetsstart set to 1:

The name psetsstart is meant to evoke “predictor sets start,” alluding
to the fact that our predictor sets here start at element 1 of allcombs, in
which the predictor set is just the singleton predictor 1, since allcombs[[1]]
is just (1). And since lasttask, computed in the call to min(), will be 2, our
second and last predictor set will be the singleton 2. To recap: P1’s work
on the current chunk will consist of first performing a regression analysis
using column 1 of x as a predictor, and then running a regression using
column 2 instead.

Now let’s look at the call to sapply() in dochunk(),

t (sapply (a l lcombs [p s e t s s t a r t : l a s t t a s k] , do1pset , x , y))

The specifies that do1pset() will first be called on allcombs[psetsstart],
then on allcombs[psetsstart+1] etc., up through allcombs[lasttask]. In
other words, do1pset() will be called on each predictor set in this worker’s
chunk of allcombs. In the case at hand, this will be the set {1} and the
set {2}.

Since the return value from do1pset() has a vector type, the results of
sapply() will be arranged in columns. Thus in the end a call to the matrix
transpose function t() is needed.

50 CHAPTER 3. SCHEDULING

The function do1pset() itself is fairly straightforward. Note that one of
the components of the object returned by the call to the regression function
lm() and then summary() is adj.r.squared, the adjusted R2 value.

The end result will be that the call to dochunk() with psetsstart equal
to 1 will return rows 1 and 2 of the final output seen in Section 3.4.3.
Thus chunking is handled in this manner, in spite of the lack of a chunking
capability in snow itself.

That’s quite a bit to digest! The partitioning of work due to chunking was
rather intricate, and a nonchunked version would have been much simpler.
But we will find in Section 3.4.5, the chunking is necessary; without it, our
parallel code would be slower than the serial version.

3.4.4.5 Wrapping Up

Back in snowapr(), we use Reduce() to amalgamate the results returned
by the workers (which, as before, will be in list form):

Reduce (rbind , out)

3.4.5 Timing Experiments

No attempt will be made here to do an exhaustive analysis, varying all the
factors—n, p, the scheduling methods, chunk size, number of processes and
so on. But let’s explore a little.

Here are some timings with n = 10000, p = 20 and k = 3 on our usual
32-core machine, though only eight cores were used here. As a baseline,
let’s see how long a run takes with just one core (without using snow). A
modified version of the code (not shown), yields the following:

> system.time(apr(x,y,3))

user system elapsed

35.070 0.132 35.295

Now let’s try it on a two-process cluster:

> system.time(snowapr(c2,x,y,3))

user system elapsed

31.006 5.028 77.447

3.4. EXAMPLE: ALL POSSIBLE REGRESSIONS 51

This is awful! Instead of cutting the run time in half, using two processes
actually doubled the time. This is a great example of the problems that
overhead can bring.

Let’s see if dynamic scheduling helps:

> system.time(snowapr(c2,x,y,3,dyn=T))

user system elapsed

33.370 4.844 64.543

A little better, but still slower than the serial version. Maybe chunking will
help?

> system.time(snowapr(c2,x,y,3,dyn=T,chunk=10))

user system elapsed

2.904 0.572 22.753

> system.time(snowapr(c2,x,y,3,dyn=T,chunk=25))

user system elapsed

1.340 0.240 19.677

> system.time(snowapr(c2,x,y,3,dyn=T,chunk=50))

user system elapsed

0.652 0.128 19.692

Ah! That’s more like it. It’s not quite clear from this limited experiment
what chunk size is best, but all of the above sizes worked well.

How about an eight-process snow cluster?

> system.time(snowapr(c8,x,y,3,dyn=T,chunk=10))

user system elapsed

3.861 0.568 7.542

> system.time(snowapr(c8,x,y,3,dyn=T,chunk=15))

user system elapsed

2.592 0.284 6.828

> system.time(snowapr(c8,x,y,3,dyn=T,chunk=20))

user system elapsed

1.808 0.316 6.740

> system.time(snowapr(c8,x,y,3,dyn=T,chunk=25))

user system elapsed

1.452 0.232 7.082

This is approximately a five-fold speedup over the serial version, very nice.

52 CHAPTER 3. SCHEDULING

Of course, theoretically we might hope for an eight-fold speedup, since we
have eight processes, but overhead prevents that.

By the way, in thinking about the chunk size, it might be useful to check
how many predictor sets we need to do in all:

> length(genallcombs(20,3))

[1] 1350

3.5 The partools Package

Recall the function matrixtolist() in the last section, which converts a
matrix to an R list of the rows or columns of the matrix. Clearly this
function would be useful in many other contexts. Thus I’ve collected this
and various other functions/code snippets in a CRAN package, partools.

3.6 Example: All Possible Regressions, Im-
proved Version

We did get good speedups above from parallelization, but at the same time
we should have some nagging doubts. After all, we are doing an awful lot
of duplicate work.

If you have background in the mathematics of linear models (don’t worry
about this if you don’t, as the following will still be readable)), you know
that the vector of estimated regression coefficients is calculated as

β̂ = (X ′X)−1X ′Y (3.1)

(again, or with something like a QR decomposition instead of matrix inver-
sion) where X is the matrix of predictor data (one column per predictor), Y
is the vector of response variable values, and the prime symbol means ma-
trix transpose. If we include a constant term in the model, as is standard,
the first column of X consists of all 1s.

The problem is that in each of the calls to lm(), we are redoing part of
this computation. In particular, look at the quantity X ′X. For each set of
predictors we use, we are forming this product for a different set of columns
of X. Why not just do it once for all of X?

3.6. IMPROVED VERSION 53

For example, say we are currently working with the predictor set (2,3,4).
Let X̃ denote the analog of X for this set. Then it can be shown that
X̃ ′X̃ is equal to the 3x3 submatrix of X ′X corresponding to rows 3-5 and
columns 3-5 of the latter.

So it makes sense to calculate X ′X once and for all, and then extract
submatrices as needed.

3.6.1 Code

r e g r e s s e s response v a r i a b l e Y column a g a i n s t
a l l p o s s i b l e s u b s e t s o f the Xi p r e d i c t o r v a r i a b l e s ,
with s u b s e t s i z e up through k ; r e t u r n s the
a d j u s t e d R−squared v a l u e f o r each s u b s e t

t h i s v e r s i o n computes X’X and X’Y f i r s t , and
s t o r e s i t a t the workers

s c h e d u l i n g methods :
#
s t a t i c (c l u s t e r A p p l y ())
dynamic (c lusterApplyLB ())
r e v e r s e the order o f the t a s k s
vary ing chunk s i z e (in dynamic case)

arguments :
c l s : c l u s t e r
x : matrix o f p r e d i c t o r s , one per column
y : v e c t o r o f the response v a r i a b l e
k : max s i z e o f p r e d i c t o r s e t
r e v e r s e : TRUE means r e v e r s e the order o f
the i t e r a t i o n s
dyn : TRUE means dynamic s c h e d u l i n g
c h u n k s i z e : s c h e d u l i n g chunk s i z e
re turn v a l u e :
R matrix , showing a d j u s t e d R−squared va lues ,
indexed by p r e d i c t o r s e t

snowapr1 <− function (c l s , x , y , k , r e v e r s e=F,dyn=F,
chunks ize =1) {

require (p a r a l l e l)
add 1 s column

54 CHAPTER 3. SCHEDULING

x <− cbind (1 , x)
xpx <− crossprod (x , x)
xpy <− crossprod (x , y)
p <− ncol (x) − 1
genera te matrix o f p r e d i c t o r s u b s e t s
al lcombs <− genal lcombs (p , k)
ncombs <− length (a l lcombs)
c lu s t e rExpor t (c l s , ” do1pset1 ”)
c lu s t e rExpor t (c l s , ” l i n r e g a d j r 2 ”)
s e t up t a s k i n d i c e s
ta sk s <− i f (! r e v e r s e)

seq (1 , ncombs , chunks ize) else
seq (ncombs ,1 ,− chunks ize)

i f (!dyn) {
out <− mclapply (tasks , dochunk2 ,

x , y , xpx , xpy , al lcombs , chunks ize)
} else {

out <− clusterApplyLB (c l s , tasks , dochunk2 ,
x , y , xpx , xpy , al lcombs , chunks ize)

}
Reduce (rbind , out)

}

genera te a l l nonempty s u b s e t s o f 1 . . p o f s i z e <= k ;
r e t u r n s a l i s t , one element per p r e d i c t o r s e t
genal lcombs <− function (p , k) {

al lcombs <− l i s t ()
for (i in 1 : k) {

tmp <− combn (1 : p , i)
a l lcombs <− c (al lcombs , m a t r i x t o l i s t (tmp , rc =2))

}
al lcombs

}

e x t r a c t s rows (rc =1) or columns (rc =2) o f a matrix ,
producing a l i s t
m a t r i x t o l i s t <− function (rc ,m) {

i f (rc == 1) {
Map(function (rownum) m[rownum ,] , 1 : nrow(m))

} else Map(function (colnum) m[, colnum] , 1 : ncol (m))
}

p roc ess a l l t he p r e d i c t o r s e t s in the chunk

3.6. IMPROVED VERSION 55

whose f i r s t index i s p s e t s t a r t
dochunk2 <− function (p s e t s t a r t , x , y , xpx , xpy ,

al lcombs , chunks ize) {
ncombs <− length (a l lcombs)
l a s t t a s k <− min(p s e t s t a r t+chunksize −1,ncombs)
t (sapply (a l lcombs [p s e t s t a r t : l a s t t a s k] , do1pset1 ,

x , y , xpx , xpy))
}

f i n d the a d j u s t e d R−squared v a l u e s f o r the g iven
p r e d i c t o r s e t index
do1pset1 <− function (onepset , x , y , xpx , xpy) {

ps <− c (1 , onepset +1) # account f o r cons tant term
x1 <− x [, ps]
xpx1 <− xpx [ps , ps]
xpy1 <− xpy [ps]
ar2 <− l i n r e g a d j r 2 (x1 , y , xpx1 , xpy1)
n0s <− ncol (x) − length (ps)
form the r e p o r t f o r t h i s p r e d i c t o r s e t ; need
t r a i l i n g 0 s so as to form matr ices o f uniform
numbers o f rows , to use rb ind () in snowapr ()
c (ar2 , onepset , rep (0 , n0s))

}

f i n d s r e g r e s s i o n e s t i m a t e s ”from s c r a t c h ”
l i n r e g a d j r 2 <− function (x , y , xpx , xpy) {

bhat <− solve (xpx , xpy)
r e s i d s <− y − x %∗% bhat
r2 <− 1 − sum(r e s i d s ˆ2)/sum((y−mean(y)) ˆ 2)
n <−nrow(x) ; p <− ncol (x) − 1
1 − (1− r2) ∗ (n−1) / (n−p−1) # adj R2

}

which p r e d i c t o r s e t seems b e s t
snowtest1 <− function (c l s , n , p , k , chunks ize =1,

dyn=F, r v r s=F) {
gendata (n , p)
snowapr (c l s , x , y , k , rvrs ,dyn , chunks ize)

}

gendata <− function (n , p) {
x <<− matrix (rnorm(n∗p) , ncol=p)
y <<− x%∗%c (rep (0 . 5 , p)) + rnorm(n) }

56 CHAPTER 3. SCHEDULING

3.6.2 Code Analysis

There are only a few changes from the previous code:

• As mentioned, typically regression models include a constant term,
i.e., the β0 in the model

mean response = β0 + β1 predictor1 + β2 predictor2 + ... (3.2)

To accommodate this, the math underpinnings of regression require
that a column of 1s be prepended to the X matrix. This is done via
the line

x <− cbind (1 , x)

in snowapr1().2

• Our predictor set indices, e.g. (2,3,4) above, must then be shifted
accordingly in do1pset(), now named do1pset1() in this new code.

ps <− c (1 , onepset +1) # account f o r cons tant term

• Note that R’s crossprod() function is used. Called on matrices A
and B, it computes A′B.

• The function linregadjr2() computes adjusted R2 from the mathe-
matical definition. (The R function lm.fit() could not be used here,
as it would not take advantage of our having already computed X ′X
and X ′Y .)

3.6.3 Timings

Let’s run snowapr1() in the same settings we did earlier for snowapr().
Again, this is for n = 10000, p = 20 and k = 3, all with dyn = T, reverse

2The reader should note that the code here has not been optimized for good numerical
properties, e.g. matrix condition number.

3.7. INTRODUCING ANOTHER TOOL: MULTICORE 57

= FALSE on an eight-node snow cluster.

chunksize snowapr() snowapr1()
1 39.81 63.67

10 7.54 6.16
15 6.83 4.60
20 6.74 3.39
25 7.08 3.13

Aside from an odd increase in the nonchunked case, there was a marked im-
provement. But there’s more: Since the times still seemed to be decreasing
at chunksize = 25, I tried some larger sizes:

chunksize snowapr1()
50 1.632
75 1.026

150 0.726
200 0.633
350 0.683
500 0.831

So not only did it help to precompute X ′X and X ′Y in terms of improv-
ing corresponding earlier times, it also enables much better exploitation of
chunking.

The reader might wonder whether it would pay to parallelize those com-
putations, i.e., of X ′X and X ′Y . The answer is no for the problem sizes
seen above; the time for serial computation of those two matrices is already
quite small, so overhead would produce a net loss of speed. However, it
may be worthwhile on much larger problems.

3.7 Introducing Another Tool: multicore

As explained in Section 1.4.2, the parallel package was formed from two
contributed R packages, snow and multicore. Now that we’ve seen how
the former works, let’s take a look at the latter. (Note that just as we have
been using snow as a shorthand for “the portion of the parallel package
that was adapted from snow,” we’ll do the same for multicore.)

As the name implies, multicore must be run on a multicore machine. Also,
it’s restricted to Unix-family operating systems, notably Linux and the

58 CHAPTER 3. SCHEDULING

Macintosh’s OS X. But with such a platform, you may find that multicore
outperforms snow.3

3.7.1 Source of the Performance Advantage

Unix-family OSs include a system call, i.e., a function in the OS that ap-
plication programmers can call as a service, named fork(). This is fork as
in “fork in the road,” rather than in “knife and fork.” The image the term
is meant to evoke is that of a process splitting into two.

What multicore does is call the OS fork(). The result is that if you call
one of the multicore functions in the parallel package, you will now have
two or more instances of R running on your machine! Say you have a quad
core machine, and you set mc.cores to 4 in your call to the multicore
function mclapply(). You will now have five instances of R running—
your original plus four copies. (You can check this by running your OS’ ps
command.)

This in principle should fully utilize your machine in the current computation—
four child R processes running on four cores. (The parent R process is
dormant, waiting for the four children to finish.)

An absolutely key point is that initially the four child R processes will
be exact copies of the parent. They will have the same values of your
variables, as of the time of the forks. Just as importantly, initially the four
children are actually sharing the data, i.e., are accessing the same physical
locations in memory. (Note the word initially above; any changes made to
the variables by a worker process will NOT be reflected at the manager or
at the other workers.)

To see why that is so important, think again of the all possible regressions
example earlier in this chapter, specifically the improved version discussed
in Section 3.6. The idea there was to limit duplicate computation, by
determining xpx and xpy just once, and sending them to the workers.

But the latter is a possible problem. It may take quite some time to send
large objects to the workers. In fact, shipping the two matrices to the
workers adds even more overhead, since as noted in Section 2.10, the snow
package serializes communication.

But with multicore, no such action is necessary. Because fork() creates
exact, shared, copies of the original R process, they all already have the
variables xpx and xpy! At least for Linux, a copy-on-write policy is used,

3One should add, “In the form of snow used so far.” More on this below.

3.7. INTRODUCING ANOTHER TOOL: MULTICORE 59

which is to have the child processes physically share the data until such time
as it is written to. But in this application, the variables do not change, so
using multicore should be a win. Note that the same gain might be made
for the variable allcombs too.

The snow package also has an option based on fork(), called makeFork-
Cluster(). Thus, potentially this same performance advantage can be
attained in snow, using that function instead of makeCluster(). If you
are using snow on a multicore platform, you should consider this option.

3.7.2 Example: All Possible Regressions, Using multi-
core

The workhorse of multicore is mclapply(), a parallel version of lapply().
Let’s convert our previous code to use this function. Since it is largely
similar to snow’s clusterApply(), the changes to our previous code will
be pretty minimal. In fact, since there are no (explicit) clusters, our code
here will be somewhat simpler than the snow version.

Here’s the code:

r e g r e s s e s response v a r i a b l e Y column a g a i n s t
a l l p o s s i b l e s u b s e t s o f the Xi p r e d i c t o r v a r i a b l e s ,
with s u b s e t s i z e up through k ; r e t u r n s the
a d j u s t e d R−squared v a l u e f o r each s u b s e t

t h i s v e r s i o n computes X’X and X’Y f i r s t

s c h e d u l i n g methods :
#
s t a t i c (c l u s t e r A p p l y ())
dynamic (c lusterApplyLB ())
r e v e r s e the order o f the t a s k s
chunk s i z e (in dynamic case)

arguments :
x : matrix o f p r e d i c t o r s , one per column
y : v e c t o r o f the response v a r i a b l e
k : max s i z e o f p r e d i c t o r s e t
r e v e r s e : TRUE means r e v e r s e the order
of the i t e r a t i o n s
dyn : TRUE means dynamic s c h e d u l i n g
chunk : chunk s i z e

60 CHAPTER 3. SCHEDULING

return v a l u e :
R matrix , showing a d j u s t e d R−squared va lues ,
indexed by p r e d i c t o r s e t

mcapr <− function (x , y , k , ncores , r e v e r s e=F,
dyn=F, chunk=1) {

require (p a r a l l e l)
add 1 s column to X
x <− cbind (1 , x)
f i n d X’X, X’Y
xpx <− crossprod (x , x)
xpy <− crossprod (x , y)
genera te matrix o f p r e d i c t o r s u b s e t s
al lcombs <− genal lcombs (ncol (x)−1 ,k)
ncombs <− length (a l lcombs)
s e t up t a s k i n d i c e s
ta sk s <− i f (! r e v e r s e) seq (1 , ncombs , chunk) else

seq (ncombs ,1 ,− chunk)
out <− mclapply (tasks , dochunk2 , x , y , xpx , xpy ,

al lcombs , chunk , mc . co r e s=ncores ,mc .
pre schedu l e=!dyn)

Reduce (rbind , out)
}

p roc ess a l l t he p r e d i c t o r s e t s in the chunk
whose f i r s t a l l combs index i s p s e t s s t a r t
dochunk2 <− function (p s e t s s t a r t , x , y ,

xpx , xpy , al lcombs , chunk) {
ncombs <− length (a l lcombs)
l a s t t a s k <− min(p s e t s s t a r t+chunk−1,ncombs)
t (sapply (a l lcombs [p s e t s s t a r t : l a s t t a s k] , do1pset2 ,

x , y , xpx , xpy))
}

f i n d the a d j u s t e d R−squared v a l u e s f o r the g iven
p r e d i c t o r se t , onepse t
do1pset2 <− function (onepset , x , y , xpx , xpy) {

ps <− c (1 , onepset +1) # account f o r 1 s column
xps <− x [, ps]
xpxps <− xpx [ps , ps]
xpyps <− xpy [ps]
ar2 <− l i n r e g a d j r 2 (xps , y , xpxps , xpyps)
n0s <− ncol (x) − length (ps)

3.7. INTRODUCING ANOTHER TOOL: MULTICORE 61

form the r e p o r t f o r t h i s p r e d i c t o r s e t ; need
t r a i l i n g 0 s so as to form matr ices o f uniform
numbers o f rows , to use rb ind () in mcapr ()
c (ar2 , onepset , rep (0 , n0s))

}

do l i n e a r r e g r e s s i o n wi th g iven xpx , xpy ,
re turn adj . R2
l i n r e g a d j r 2 <− function (xps , y , xpx , xpy) {

g e t b e ta c o e f f i c i e n t e s t i m a t e s
bhat <− solve (xpx , xpy)
f i n d R2 and then a d j u s t e d R2
r e s i d s <− y − xps %∗% bhat
r2 <− 1 − sum(r e s i d s ˆ2)/sum((y−mean(y)) ˆ 2)
n <−nrow(xps) ; p <− ncol (xps) − 1
1 − (1− r2) ∗ (n−1) / (n−p−1)

}

genera te a l l nonempty s u b s e t s o f 1 . . p o f s i z e <= k ;
r e t u r n s a l i s t , one element per p r e d i c t o r s e t
genal lcombs <− function (p , k) {

al lcombs <− l i s t ()
for (i in 1 : k) {

tmp <− combn (1 : p , i)
a l lcombs <− c (al lcombs , m a t r i x t o l i s t (tmp , rc =2))

}
al lcombs

}

e x t r a c t s rows (rc =1) or columns (rc =2) o f a matrix ,
producing a l i s t
m a t r i x t o l i s t <− function (rc ,m) {

i f (rc == 1) {
Map(function (rownum) m[rownum ,] , 1 : nrow(m))

} else Map(function (colnum) m[, colnum] , 1 : ncol (m))
}

t e s t data
gendata <− function (n , p) {

x <<− matrix (rnorm(n∗p) , ncol=p)
y <<− x%∗%c (rep (0 . 5 , p)) + rnorm(n)

}

62 CHAPTER 3. SCHEDULING

As noted, the changes from the snow version are pretty small. References
to clusters are gone, and we no longer export functions like do1pset1()
to the workers, again because the workers already have them! The calls to
clusterApply() have been replaced by mclapply().4

Let’s look at the calls to mclapply():

out <− mclapply (tasks , dochunk2 , x , y , xpx , xpy , al lcombs , chunk ,
mc . co r e s=ncores ,mc . pre schedu l e=!dyn)

The call format (at least as used here) is almost identical to that of clus-
terApply(), with the main difference being that we specify the number of
cores rather than specifying a cluster.

As with snow, multicore offers both static and dynamic scheduling, by
setting the mc.preschedule parameter to either TRUE or FALSE, respec-
tively. (The default is TRUE.) Thus here we simply set mc.preschedule
to the opposite of dyn.

In that static case, multicore assigns loop iterations to the cores in a
Round Robin manner as with clusterApply().

For dynamic scheduling, mclapply() initially creates a number of R child
processes equal to the specified number of cores; each one will handle one
iteration. Then, whenever a child process returns its result to the original
R process, the latter creates a new child, to handle another iteration.

Timings:

So, does it work well? Let’s try it on a slightly larger problem than before—
using eight cores again, same n and p, but with k = 5 instead of k = 3.

Here are the better times found in runs of the improved snow version we
developed earlier:

> system.time(snowapr1(c8,x,y,5,dyn=T,chunk=300))

user system elapsed

7.561 0.368 8.398

> system.time(snowapr1(c8,x,y,5,dyn=T,chunk=450))

user system elapsed

5.420 0.228 7.175

> system.time(snowapr1(c8,x,y,5,dyn=T,chunk=600))

user system elapsed

3.696 0.124 6.677

4Though mclapply() still has xpx etc. as arguments, what will be copied will just
be pointers to those variables in shared memory; no actual data will be copied. By
contrast, if we run our previous snow code on clusters formed by makeCluster(), the
data will be copies, via the sockets.

3.8. ISSUES WITH CHUNK SIZE 63

> system.time(snowapr1(c8,x,y,5,dyn=T,chunk=800))

user system elapsed

2.984 0.124 6.544

> system.time(snowapr1(c8,x,y,5,dyn=T,chunk=1000))

user system elapsed

2.505 0.092 6.441

> system.time(snowapr1(c8,x,y,5,dyn=T,chunk=1200))

user system elapsed

2.248 0.072 7.218

Compare to these results for the multicore version:

> system.time(mcapr(x,y,5,dyn=T,chunk=50,ncores=8))

user system elapsed

35.186 14.777 7.259

> system.time(mcapr(x,y,5,dyn=T,chunk=75,ncores=8))

user system elapsed

36.546 15.349 7.236

> system.time(mcapr(x,y,5,dyn=T,chunk=100,ncores=8))

user system elapsed

37.218 9.949 6.606

> system.time(mcapr(x,y,5,dyn=T,chunk=125,ncores=8))

user system elapsed

38.871 9.572 6.675

> system.time(mcapr(x,y,5,dyn=T,chunk=150,ncores=8))

user system elapsed

34.458 8.012 5.843

> system.time(mcapr(x,y,5,dyn=T,chunk=175,ncores=8))

user system elapsed

34.754 5.936 5.716

> system.time(mcapr(x,y,5,dyn=T,chunk=200,ncores=8))

user system elapsed

39.834 7.389 6.440

There are two points worth noting here. First, of course, we see that
multicore did better, by about 10%. But also note that the snow version
required much larger chunk sizes in order to do well. This should make
sense, recalling the fact that the whole point of chunking is to amortize
the overhead. Since the snow version has more overhead, it needs a larger
chunk size to get good performance.

3.8 Issues with Chunk Size

We’ve seen here that program performance can be quite sensitive to the
chunk size. If the chunk size is too small, we’ll have more chunks to process,
and thus will incur more overhead. But if the chunks are too large, we may
have load balance problems near the end of the run.

64 CHAPTER 3. SCHEDULING

So, how does one choose that value?

Data science is full of such vexing questions. Indeed, the example used
earlier, in which we computed all possible regressions, was motivated by
such a question: How do we choose the predictor set? That question has
never been fully settled, despite a plethora of methods that have been
developed. The situation for the chunk size is actually worse, since there
are not even standard (if suboptimal) methods to deal with the problem.

In many applications, one must handle a sequence of problems, not just one.
In such cases, one can determine a good chunk size via experimentation on
the first one or two problems, and then use that chunk size from that point
onward.

Note too that we have not tried the approach of using time-varying chunk
size, mentioned briefly early in this chapter. Recall that the idea is to start
out with large chunks for the early iterations, to reduce overhead, but then
use smaller chunks near the end, to achieve better load balance.

You may wonder if this is even possible in snow or multicore. In fact, it
is. Recall that we could achieve chunking with those two packages, even
though neither offered chunking as an option; we simply had to code things
properly.

Consider this simple example: We have 20 iterations and two processes.
We could, say, define our chunks to consist of iterations 1-7, iterations 8-
14, iterations 15-17 and iterations 18-20. In other words, we would have
chunks of size 7, 7, 3 and 3.

Then we would make adjustments to the code accordingly.

So, we could indeed have time-varying chunk size, though at the expense
of more complex coding. And there is no guarantee that the time-varying
chunk size would give us much improvement, if any.

This issue will arise again in Section 5.3.

3.9 Example: Parallel Distance Computation

Say we have two data sets, with m and n observations, respectively. There
are a number of applications in which we need to compute the mn pairs
of distances between observations in one set and observations in the other.
(The two data sets will be assumed separate from each other here, but the
code could be adjusted if the sets are the same.)

3.9. EXAMPLE: PARALLEL DISTANCE COMPUTATION 65

Many clustering algorithms make use of distances, for example. These tend
to be complex, so in order to have a more direct idea of why distances are
important in many statistical applications, consider nonparametric regres-
sion.

Suppose we are predicting one variable from two others. For simplicity
of illustration, let’s use an example with concrete variables. Suppose we
are predicting human weight from height and age. In essence, this involves
expressing mean weight as a function of height and age, and then estimating
the relationship from sample data in which all three variables are known,
often called the training set. We also have another data set, consisting of
people for whom only height and age are known, called the prediction set;
this is used for comparing the performance of several models we ran on the
training set, without the possible overfitting problem.

In nonparametric regression, the relationship between response and predic-
tor variables is not assumed to have a linear or other parametric form. To
guess the weight of someone in the prediction set, known to be 70 inches
tall and 32 years old, we might look at people in our training set who are
within, say, 2 inches of that height and 3 years of that age. We would then
take the average weight of those people, and use it as our predicted weight
for the 70-inch tall, age 32 person in our prediction set. As a refinement,
we could give the people in our training sets who are very close to 70 inches
tall and 32 years old more weight in this average.

Either way, we need to know the distances from observations in our training
set to points in our prediction set. Suppose we have n people in our sample,
and wish to predict p new people. That means we need to calculate np
distances, exactly the setting described above. This could involve lots of
computation, so let’s see how we can parallelize it all, shown in the next
section.

3.9.1 The Code

As usual, we hope to write parallel code that leverages existing R serial
functions, in this case pdist().

f i n d s d i s t a n c e s between a l l p o s s i b l e p a i r s o f rows
in the matrix x and rows in the matrix y , as wi th
p d i s t () but in p a r a l l e l

arguments :
c l s : c l u s t e r
x : data matrix

66 CHAPTER 3. SCHEDULING

y : data matrix
dyn : TRUE means dynamic s c h e d u l i n g
chunk : chunk s i z e
re turn v a l u e :
f u l l d i s t a n c e matrix , as p d i s t o b j e c t

l ibrary (p a r a l l e l)
l ibrary (pd i s t)

snowpdist <− function (c l s , x , y ,dyn=F, chunk=1) {
nx <− nrow(x)
ichunks <− npart (nx , chunk)
d i s t s <−

i f (!dyn) { c lus te rApp ly (c l s , ichunks ,
dochunk , x , y)

} else clusterApplyLB (c l s , ichunks , dochunk , x , y)
tmp <− Reduce (c , d i s t s)
new(” pd i s t ” , d i s t = tmp , n = nrow(x) , p = nrow(y))

}

p roc ess a l l rows in ichunk
dochunk <− function (ichunk , x , y) {

pd i s t (x [ichunk ,] , y) @dist
}

p a r t i t i o n 1 :m i n t o chunks o f approx . s i z e chunk
npart <− function (m, chunk) {

s p l i t I n d i c e s (m, cei l ing (m/chunk))
}

Let’s see how this code works.

First, it builds upon the pdist package, available from R’s CRAN repository
of contributed code. The function pdist() in turn calls Rpdist(), written
in C. Once again, we are heeding the advice in Section 1.1: In building our
parallel code, we take advantage of powerful and efficiently implemented
operations in R.

The basic approach is simple: We break the matrix x into chunks, then use
pdist() to find the distances from rows in each chunk to y. However, we
have some details to attend to in combining the results.

The pdist package defines an S4 class of the same name, the core of which
is the distance matrix. Here is an example of such a matrix:

3.9. EXAMPLE: PARALLEL DISTANCE COMPUTATION 67

> x

[,1] [,2]

[1,] 2 5

[2,] 4 3

> y

[,1] [,2]

[1,] 1 4

[2,] 3 1

The distance matrix for these two data sets is

(
1.414214 4.123106
3.162278 2.236068

)
(3.3)

The distance from row 1 of x to row 1 of y is
√

(1− 2)2 + (4− 5)2 =

1.414214, while that from row 1 of x to row 2 of y is
√

(3− 2)2 + (1− 5)2 =
4.123106. These numbers form row 1 of the distance matrix, and row 2 is
formed similarly.

The function pdist() computes the distance matrix, returning it as the
dist slot in an object of the class pdist:

> pdist(x,y)

An object of class "pdist"

Slot "dist":

[1] 1.414214 4.123106 3.162278 2.236068

attr(,"Csingle")

[1] TRUE

Slot "n":

[1] 2

Slot "p":

[1] 2

Slot ".S3Class":

[1] "pdist"

Note that the distance matrix is given as a one-dimensional vector, stringing
all the rows together. You can convert it to a matrix if you wish:

68 CHAPTER 3. SCHEDULING

> d <- pdist(x,y)

> as.matrix(d)

[,1] [,2]

[1,] 1.414214 4.123106

[2,] 3.162278 2.236068

With this in mind, look at the code:

d i s t s <−
i f (!dyn) { c lus te rApp ly (c l s , ichunks ,

dochunk , x , y)
} else clusterApplyLB (c l s , ichunks , dochunk , x , y)

tmp <− Reduce (c , d i s t s)
new(” pd i s t ” , d i s t = tmp , n = nrow(x) , p = nrow(y))

}

The list dists will contain the results of calling pdist() on the various
chunks. Each one will be an object of class pdist. We need to essentially
take them apart, combine the distance slots, then form a new object of
class pdist.

Since the dist slot in a pdist object contains row-by-row distances any-
way, we can simply use the standard R concatenate function c() to do the
combining. We then use new() to create a grand pdist object for our final
result.

If we simply wanted the distance matrix itself, we’d apply as.matrix() as
the last step in dochunk(), and not call new() in snowpdist().

3.9.2 Timings

As before, no attempt will be made here to do a general study of the
efficiency of the code, but below are some sample timings, on 2 and 4 cores.

> genxy

function (n, k)

{

x <<- matrix(runif(n * k), ncol = k)

y <<- matrix(runif(n * k), ncol = k)

}

> genxy(15000,20)

> system.time(pdist(x,y))

3.10. THE FOREACH PACKAGE 69

user system elapsed

40.459 6.144 46.885

> system.time(snowpdist(c2,x,y,chunk=500))

user system elapsed

15.189 3.156 46.520

> system.time(snowpdist(c4,x,y,chunk=500))

user system elapsed

15.749 3.620 34.537

The 2-node cluster failed to yield a speedup. The 4-node system was faster,
but yielded a speedup of only about 1.36, rather than the theoretical value
of 4.0.

Overhead seemed to have a major impact here, so a larger problem was
investigated, with 50 variables instead of 20, and computing with up to 8
cores:

> genxy(15000,50)

> system.time(pdist(x,y))

user system elapsed

88.925 5.597 94.901

> system.time(snowpdist(c2,x,y,chunk=500))

user system elapsed

16.973 3.832 77.563

> system.time(snowpdist(c4,x,y,chunk=500))

user system elapsed

17.069 3.800 49.824

> system.time(snowpdist(c8,x,y,chunk=500))

user system elapsed

15.537 3.360 32.098

Here even use of only two nodes produced an improvement, and cluster
sizes of 4 and 8 showed further speedups.

3.10 The foreach Package

Yet another popular R tool for parallelizing loops is the foreach package,
available from the CRAN repository of contributed code. Actually foreach
is more explicitly aimed at the loops case, as seen from its name, evoking
for loops.

70 CHAPTER 3. SCHEDULING

The package has the user set up a for loop, as in serial code, but then use
the foreach() function instead of for(). One must also make one more
small change, adding an operator, %dopar%, but that’s all the user must
do to parallelize his/her serial code.

Thus foreach has a very appealing simplicity. However, in some cases, this
simplicity can mask major opportunities for achieving speedup, as will be
seen in the example in the next section.

3.10.1 Example: Mutual Outlinks Problem

Here is foreach code for the mutual outlinks problem.

mutoutfe <− function (l i n k s) {
require (f o r each)
nr <− nrow(l i n k s)
nc <− ncol (l i n k s)
to t = 0
fo r each (i = 1 : (nr−1)) %dopar% {

for (j in (i +1): nr) {
for (k in 1 : nc)

to t <− to t + l i n k s [i , k] ∗ l i n k s [j , k]
}

}
to t / nr

}

s imfe <− function (nr , nc , ncores) {
require (doMC) # l o a d s ’ p a r a l l e l ’ too
c l s <− makeCluster (ncores)
registerMC (co r e s=ncores)
lnks <<− matrix (sample (0 : 1 , (nr∗nc) , replace=TRUE) ,

nrow=nr)
print (system . time (mutoutfe (lnks)))

}

The function mutoutfe() above is an adaptation of the serial algorithm
back in Chapter 1:

mutoutser <− function (l i n k s) {
nr <− nrow(l i n k s)
nc <− ncol (l i n k s)
to t = 0

3.10. THE FOREACH PACKAGE 71

for (i in 1 : (nr−1)) {
for (j in (i +1): nr) {

for (k in 1 : nc)
to t <− to t + l i n k s [i , k] ∗ l i n k s [j , k]

}
}
to t / nr

}

The original for loop with index i has now been replaced by foreach and
%dopar%:

f o r each (i = 1 : (nr−1)) %dopar% {

The user needs to also specify the platform to run on, the backend in fore-
ach parlance. This can be snow, multicore or various other parallel
software systems. This is the flexibility alluded to above—one can use the
same code on different platforms.

To see how this works, here is a function that performs a speed test of the
above code:

s imfe <− function (nr , nc , ncores) {
require (doMC)
registerDoMC (co r e s=ncores)
lnks <<− matrix (sample (0 : 1 , (nr∗nc) , replace=TRUE) ,

nrow=nr)
print (system . time (mutoutfe (lnks)))

}

Here we’ve chosen to use the multicore backend. The package doMC
is designed for this purpose. We call registerDoMC() to set up a call
to multicore with the desired number of cores, and then when foreach
within mutoutfe() runs, it uses that multicore platform.

Let’s see how well it works:

> s imfe (500 ,500 ,2)
user system e lapsed

17 .392 0 .036 17 .663
> s imfe (500 ,500 ,4)

user system e lapsed
52 .900 0 .176 13 .578

> s imfe (500 ,500 ,8)
user system e lapsed

62 .488 0 .352 7 .408

72 CHAPTER 3. SCHEDULING

3.10.2 A Caution When Using foreach

As noted, a strong appeal of foreach is that (for embarrassingly parallel
problems) we can parallelize our serial code by simply changing just a single
line in the latter. We just replace

for (i in i r ange)

by

fo r each (i in i r ange) %dopar%

However, this simplicity can be quite deceiving in some cases.

For instance, the above timings for foreach on the mutual outlinks problem
look good at first; the more cores we use, the shorter the run time. But
something should trouble us here: We are checking one row at a time, i.e.,
one value of i at a time, and thus not taking advantage of R’s fast matrix-
multiplication capability, which gave us a dramatic increase in speed back
in Section 1.4.5.

Indeed, the snow version, that did take advantage of matrix multiplication,
is much faster here:

> simsnow
function (nr , nc , ncores) {

require (p a r a l l e l)
lnks <<− matrix (sample (0 : 1 , (nr∗nc) , replace=TRUE) ,

nrow=nr)
c l s <− makeCluster (ncores)
print (system . time (mutoutpar (c l s)))

}
> simsnow (500 ,500 ,2)

user system e lapsed
0 .272 0 .076 11 .266

> simsnow (500 ,500 ,4)
user system e lapsed

0 .304 0 .036 6 .008
> simsnow (500 ,500 ,8)

user system e lapsed
0 .348 0 .040 3 .407

Another example is our parallel distance computation in Section (3.9). Ac-
tually, you can see that this is a common scenario, occurring whenever there

3.11. STRIDE 73

is an R function available that works most efficiently on chunks rather than
on individual entities such as matrix rows.

The solution of course is easy: We simply incorporate chunking and matrix
multiplication into the foreach version, and then have i range through
the chunks accordingly. But the real moral of the story is that naive use of
foreach() may mask real opportunities for speedup; we should not blithely
assume that simply by making code parallel, we’ve achieved all the possible
speedup.

This of course applies to snow and the other parallelization packages too,
but again, we should be especially careful in the case of foreach() and
avoid thinking that problems are easy to parallelize just because we use
that package.

3.11 Stride

In discussions of parallel loop computation, one often sees the word stride,
which refers to address spacing between successive memory accesses. Sup-
pose we have a matrix having m rows and n columns. Consider the effects
of, say, summing the elements in some column. If our storage uses column-
major order, the accesses will be one word apart in memory, i.e. they will
have stride 1. On the other hand, if we are using row-major storage, the
stride will be n.

This is an issue in the context of memory bank structure (Section 2.5.1.1).
Typically, low-order interleaving is used, meaning that consecutive words
are stored in consecutive banks. If we have 4 banks, i.e. an interleaving
factor of 4, then the first word will be stored in Bank 0, then next three in
Banks 1, 2 and 3, then the next in Bank 0, and so on in a cyclical fashion.

The issue is avoiding bank conflicts. If say we have a stride of 1, then we can
potentially keep all banks busy at once, the best we can hope for. Suppose
on the other hand we have a stride of 4. This would be disastrous, as
all accesses would go to the same bank, destroying our chance for parallel
operation.

Even though we write our code at a high level, such as in R or C, it is
important to keep in mind what stride will be implied by the algorithms we
design. We may not know the bank interleaving factor of the machine our
code will be run on, but at least such issues should be kept in mind. And
in the case of GPU programming, truly maximizing speed may depend on
this.

74 CHAPTER 3. SCHEDULING

3.12 Another Scheduling Approach: Random
Task Permutation

In situations in which nothing is known in advance about the iteration
times, another possibility would be to randomize the order of the iterations
before the computation begins.

For instance, consider the code in Section 3.4.2:

t a sk s <− i f (! r e v e r s e) seq (1 , ncombs , chunk) else
seq (ncombs ,1 ,− chunk)

nt <− length (ta sk s)
randpermut <− sample (1 : nt , nt , replace=F)
ta sk s <− ta sk s [randpermut]
i f (!dyn) {

out <− c lus te rApp ly (c l s , tasks , dochunk , x , y ,
al lcombs , chunk)

} else {
out <− clusterApplyLB (c l s , tasks , dochunk , x , y ,

al lcombs , chunk)

3.12.1 The Math

If you are not interested in the mathematics, this subsection can easily be
skipped, but it may provide insight for those who stay.

Say we have n iterations, with times t1, ..., tn, handled by p processes in
static scheduling. Let π denote a random permutation of (1,...,n), and set

Ti = tπ(i), i = 1, ...n (3.4)

So the Ti are the randomly permuted ti, thus random.

Then our ith process handles iterations πs through πe, where

s = (i− 1)c+ 1 (3.5)

3.12. RANDOM TASK PERMUTATION 75

and

e = ic (3.6)

with c being the chunk size:

c = n/p (3.7)

(assuming n is divisible by p).

Let µ and σ2 represent the mean and variance of the ti:

µ =
1

n

n∑
i=1

ti (3.8)

σ2 =
1

n

n∑
i=1

(ti − µ)2 (3.9)

Note that these are not the mean and variance of some hypothesized parent
distribution. No probabilistic model is being assumed for the ti; indeed,
they are not even being assumed random. So, µ and σ2 are simply the
mean and variance of the set of numbers t1, ..., tn.

Then Ts, ..., Te form a simple random sample (i.e. without replacement)
from t1, ..., tn. From finite-population sampling theory, the total computa-
tion time Ui for the ith process has mean

cµ (3.10)

and variance

(1− f)cσ2 (3.11)

where f = c/n.

The coefficient of variation of Ui, i.e. its standard deviation divided by its
mean, is then

√
(1− f)cσ2

cµ
→ 0 as c→∞ (3.12)

76 CHAPTER 3. SCHEDULING

Using standard analysis, say Chebyshev’s Inequality, we know that a ran-
dom variable with small coefficient of variation is essentially constant. Since
c = n/p, then for large n, the Ti are essentially constant. (Here either p is
assumed fixed, or p/n → 0.) In other words, the Random method asymp-
totically achieves full load balance.

Meanwhile, the Random method involves minimum possible scheduling
overhead: A worker communicates only twice with the manager, once to
receive data and once to return the results. In other words, the Random
method is asymptotically optimal, in theory.

3.12.2 The Random Method vs. Others, in Practice

The intuition behind the Random method is that in large problems, the
variance between processing time from thread to thread should be small.
This implies good load balance.

Simulation results by the author have shown that the Random method
generally performs fairly well. However, there are no “silver bullets” in the
parallel processing world. Note the following:

• By randomizing the iteration ordering, one might lose some locality
of reference, thus causing poor cache and/or virtual memory perfor-
mance. This might be ameliorated by randomizing chunks instead of
individual iterations.

• In the notation of the previous section, the theoretical justification for
the Random method is based on the variance of the random variables
Ti. Yet load balance involves the maximum of those random variables
(say via the quantity maximum minus minimum), rather than their
variance. For fixed n/p and increasing p, this could result in poor
performance, as the chances of some process taking a long time for
its chunk increase.

It is quite typical that either (a) the iteration times are known to be mono-
tonic or (b) the overhead for running a task queue is small, relative to task
times. In such cases, the Random method may not produce an improve-
ment. However, it’s something to keep in your loop scheduling toolkit.

3.13. DEBUGGING SNOW AND MULTICORE CODE 77

3.13 Debugging snow and multicore Code

Generally debugging any code is hard, but it is extra difficult with parallel
code. Just like a juggler, we have to be good at watching many things
happening at once!

Worse, one cannot use debugging tools directly, such as R’s built-in de-
bug() and browser() functions. This is because our worker code is not
running within a terminal/window environment. For the same reason, even
calls to print() won’t work.

So, let’s see what we can do.

3.13.1 Debugging in snow

One can still use browser() in a kind of tricked-up way, which will be
presented below. As it is a little clumsy, note that if you are using a
Unix-family system (Mac/Linux/Cygwin/etc.), the dbs() function in my
partools package (Section 3.5) automates the whole process for you! In
that case, you can happily ignore the following.

Here is an outline of the procedure, say for a cluster of 2 workers:

• We insert browser() calls in the code to be executed at the workers.

• When we set up a cluster, we set manual=T in our call to makeClus-
ter().

• That call will create the cluster, and then print out a message inform-
ing us at what IP address and port the manager is available.

• In 2 other windows on our screen, we start R, with an option to listen
to commands from the manager at the given IP address.

• In each of the 2 worker windows, we instruct the worker to act on the
commands sent by the manager.

• In the manager window, we call the code to be executed by the man-
ager. That code will include a call to clusterApply(), or some other
snow service. This causes the workers to start running our applica-
tion!

• The workers will hit the browser() call, and we can then debug as
usual in the two windows.

78 CHAPTER 3. SCHEDULING

But again, all this is automated in dbs().

3.13.2 Debugging in multicore

Unfortunately, the above scheme doesn’t work for multicore.

One way around not having print() available is to use cat() and print to
a file. Say we are trying to confirm that a certain variable x has the value
8, which we believe it should if our code is working right. (I call this The
Principle of Confirmation, a fundamental rule in debugging: Step through
the code, checking to see at various points whether the variables have the
values we think they ought to have. Eventually we encounter a place that
doesn’t confirm, giving us a big clue as to the approximate location of the
bug.) We could insert code like

cat (”x i s ” ,x , ”\n” , f i l e=”dbg”)

If we next want to check a variable y we insert code like

cat (”y i s ” ,y , ”\n” , f i l e=”dbg” ,append=T)

Note the append parameter. We can then inspect the file dbg from an-
other window.

One major drawback of this is that all the debugging output from the
various workers will be mixed together! This makes it hard to read, even if
one also prints an ID number for each worker. This too is remedied by the
partools package, via the function dbsmsg(), which has different workers
write to different files; this function is platform-independent.

Chapter 4

The Shared-Memory
Paradigm: A Gentle
Introduction via R

The familiar model for the shared memory paradigm (in the hardware sense)
is the multicore machine. The several parallel processes communicate with
each other by accessing memory (RAM) cells that they have in common
within a machine. This contrasts with message-passing hardware, in which
there are a number of separate, independent machines, with processes com-
municating via a network that connects the machines.

Shared-memory programming is considered by many in the parallel pro-
cessing community as being the clearest of the various paradigms available.
Since programming development time is often just as important as program
run time, the clear, concise form of the shared-memory paradigm can be a
major advantage.

Another type of shared-memory hardware is accelerator chips, notably
graphics processing units (GPUs). Here one can use one’s computer’s
graphics card not for graphics, but for fast parallel computation of non-
graphics specific operations, say matrix multiply.

Shared memory programming will be presented in three chapters. This
chapter will present an overview of the subject, and illustrate it with the
R package Rdsm. Though to get the most advantage from shared mem-
ory, one should program in C/C++, Rdsm enables one to achieve shared

79

80 CHAPTER 4. SHARED MEMORY: R

memory parallelism at the R level, which is much easier to program than
C/C++.1 The situation is analogous to the famous message-passing pack-
age MPI; to really exploit MPI’s power, one should write in C/C++, but
writing in R in Rmpi, an interface to MPI (Chapter 8), is much easier
and is often “fast enough” (Section 1.1.1). Also, Rdsm shows that shared-
memory programming can run significantly faster than other parallel pack-
ages for R, for some applications.

In addition to Rdsm’s direct value as a parallel package for R, it is also
useful for us here in this chapter as a gentle introduction to shared-memory
programming. The fact that R does the heavy lifting in terms of data
and statistical operations means we can focus on learning shared-memory
coding, more clearly than if we began with C/C++.

The chapter following this one will discuss shared-memory programming in
C/C++, and the third chapter in the set will discuss GPU programming.

4.1 So, What Is Actually Shared?

The term shared memory means that the processors all share a common
memory address space. Let’s see what that really means.

4.1.1 Global Variables

We won’t deal with machine language in this book, but a quick example
will be helpful. A processor will typically include several registers, which
are like memory cells but located inside the processor. In Intel processors,
one of the registers is named RAX.2 Note that on a multicore machine, each
core will have its own registers, so that for example each core will have its
own independent register named RAX.

Recall from Section 2.5.1.1 that the standard method of programming mul-
ticore machines is to set up threads. These are several instances of the
same program running simultaneously, with the key feature that they share
memory. To see what this means, suppose all the cores are running threads
from our program, and that the latter includes the Intel machine language
instruction

1One can also use FORTRAN, but its usage is much less common in data science.
2Some architectures are not register-oriented, but for simplicity we will assume a

register orientation here.

4.1. SO, WHAT IS ACTUALLY SHARED? 81

movl 200, %eax

which copies the contents of memory location 200 to the core’s RAX regis-
ter.

Before continuing, it is worth asking the question, “Where did that 200
come from?” In our high-level language source code, say C, we may have
had a variable named z. The C compiler would have decided at which
memory address to store z, say 200, and may have translated one of our
lines of C code accessing z to the above machine instruction.

The same principles hold for interpreted languages with virtual machines
like R. If we have a variable w in our R code, the R interpreter will choose
a memory location for it, and we will in the end be executing machine
instructions like the one above.

Now, what happens when that machine instruction executes? Remember,
there is only one memory location 200, shared by all cores, but each core
has its own separate register set. If core 1 and core 4 happen to execute this
same instruction at about the same time, the contents of memory location
200 will be copied to both core 1’s RAX and core 4’s RAX in the above
example.

One technical issue that should be mentioned is that most machines today
use virtual addressing, as explained in Chapter 2. Location 200 is actually
mapped by the hardware to a different address, say 5208, during execution.
But since in our example the cores are running threads from the same
program, the virtual address 200 will map to that same location 5208, for
all of the cores. Thus whether one is talking about a virtual or physical
address, the key point is that all the cores are accessing the same actual
memory cell.

4.1.2 Local Variables: Stack Structures

A subtlety here is that in referring to shared variables, we are typically
talking about global variables, not local variables declared within a func-
tion. The locals are stored in shared memory too, but they are typically
in stacks, which are sections of memory allocated to the threads, with a
separate stack for each thread.

Items in stacks are in most machines referenced via a register called a stack
pointer, which we will call SP here. Convention is that the stack grows
toward memory address 0, so expansion of the stack by one word on a
64-bit (i.e., 8 byte) machine is accomplished by subtracting 8 from SP.

82 CHAPTER 4. SHARED MEMORY: R

To illustrate this, consider the code

f <− function (x) {
. . .
y <− 2
z <− x + y
. . .

}

. . .
g <− function () {

t <− 3
v <− 6
w <− f (v)
u <− w + 1

}

What happens when the thread executes the call f(v) from with g()? The
internal R code (or the compiled machine code, in the case of C/C++) will
subtract 8 from SP, and then write 6 to the top of the (newly expanded)
stack, i.e., to the word currently pointed to by SP. Then to start execution
of f(), the code will do two things: (a) It will again decrement SP by 8,
and write to the stack the address of the code following the call, in this
case the code u <−w + 2 (to know where to come back later). (b) It will
jump to the area of memory where f() is stored, thus starting execution of
that function. The internal R code will then make space on the stack for
y, again by subtracting 8 from SP, and when y <−2 is executed, 2 will be
written to y’s location in the stack. Any code making use of x will be able
to fetch it from within the stack, as it was placed there earlier.

The above is useful information in general, and will be discussed again later
in the book, but for our purposes right now, the point is this: Since each
core has a separate stack pointer, the stacks for the various threads will
be in different sections of memory. Thus my threads-for-R package Rdsm,
to be presented shortly, has been designed so that the local variable y
will have a separate, independent instantiation at each thread. An Rdsm
shared variable, by contrast, will have just one instantiation, readable and
writable by all threads, as we’ll see.

By the way, note too what happens when the function f() finishes execution
and returns. The internal code will clean up the stack, by moving SP back
to where it had been before writing the 6 and 2 to the stack. SP will now
point to a word that contains the address recorded in step (a) above, and
the code will now make a jump to that address, i.e., u <−w + 1 will be

4.2. CLARITY OF SHARED-MEMORY CODE 83

executed, exactly what we want. So, g() resumes execution, and its own
local variables, such as t, are still available, as they are still on the stack,
from the time g() itself had been called.

4.1.3 Non-Shared Memory Systems

In non-shared-memory systems, say a network of workstations on which we
are running Rmpi or snow,3 each workstation has its own memory, and
each one will then have its own location 200, completely independent of
the locations 200 at the other workstations’ memories. Note, though, that
each workstation might be running multicore hardware, in which case we
have a hybrid system.

Note too that we can still run message-passing software such as Rmpi and
snow on a multicore machine (and indeed, did so in earlier chapters). But
in this case we simply are not taking advantage of the shared memory.4 If
we are using Rmpi, for instance, our several processes will not be threads,
and virtual location 200 might map to 5208 on one core but 28888 on
another.

4.2 Clarity of Shared-Memory Code

The shared-memory programming world view is considered by many in the
parallel processing community to be one of the clearest forms of parallel
programming.5 Let’s see why.

Suppose for instance we wish to copy x to y. In a message-passing setting
such as Rmpi, x and y may reside in processes at network nodes 2 and 5,
say. The programmer might write code to run on process 2 like

mpi . send . Robj (x , tag =0, des t =5) # send to worker 5

and write code

3Recall that we use snow to refer to the portion of R’s parallel package that origi-
nated as a package named snow.

4You may recall that if we create a snow cluster using makeForkCluster(); our
globals are initially shared among the workers, but changes made by the workers to the
globals won’t be shared.

5See Chandra, Rohit (2001), Parallel Programming in OpenMP, Kaufmann, pp.10ff
(especially Table 1.1), and Hess, Matthias et al (2003), Experiences Using OpenMP
Based on Compiler Directive Software DSM on a PC Cluster, in OpenMP Shared Memory
Parallel Programming: International Workshop on OpenMP Applications and Tools,
Michael Voss (ed.), Springer, p.216.

84 CHAPTER 4. SHARED MEMORY: R

r e c e i v e from worker 2
y <− mpi . recv . Robj (tag =0, source =2)

to run on process 5. By contrast, in a shared-memory environment, the
variables x and y would be shared, and the programmer would merely
write

y <− x

What a difference! Now that x and y are shared by the processes, we can
access them directly, making our code vastly simpler.

Note carefully that we are talking about human efficiency here, not machine
efficiency. Use of shared memory can greatly simplify our code, with far less
clutter, so that we can write and debug our program much faster than we
could in a message-passing environment. That doesn’t necessarily mean our
program itself has faster execution speed. We may have cache performance
issues, for instance; we’ll return to this point later.

It will turn out, though, that Rdsm can indeed enjoy a speed advantage
over other parallel R packages for some applications. We’ll return to this
issue in Section 4.5.

4.3 High-Level Introduction to Shared-Memory
Programming: Rdsm Package

Though one sometimes needs to write directly in C/C++ in order to truly
maximize speed, it is highly desirable to stay within R whenever possible, in
order to leverage R’s powerful data manipulation and statistical operations.
This is the philosophy underlying R packages such as Rmpi and snow.

However, those are message-passing approaches, and as mentioned above,
the inherent simplicity of the shared-memory programming paradigm makes
it highly desirable to get the best of both worlds—working in shared mem-
ory but writing in R. At the time of this writing, my package Rdsm is the
only such package. You can download it from the R contributed package
repository, CRAN.

R itself is not threaded (or more accurately, R does not make threading
available at the R programming level). But Rdsm brings threads pro-
gramming to R. And as noted earlier, in addition to Rdsm’s direct value
as a parallel package for R, it is also useful for us here in this chapter as a
gentle introduction to shared-memory programming.

4.4. EXAMPLE: MATRIX MULTIPLICATION 85

4.3.1 Use of Shared Memory

As with snow and Rmpi, in Rdsm each process is a separate, independent
instantiation of R. However, the difference is that with Rdsm, the processes
must run on the same machine, and they share variables, in fact doing so
via physical shared memory.

Modern operating systems allow the programmer to request that a chunk
of memory be made available on a shared basis by any process that holds a
certain code, a key. The bigmemory package in R’s CRAN code repository
enables this for R programmers, and Rdsm builds on this.6

Ironically, the shared-memory package Rdsm also uses the message-passing
software snow for some infrastructure. Specifically, the Rdsm programmer
makes a certain call to set up each shared variable, and snow is used to
distribute the associated keys to the Rdsm threads, thus enabling the
threads to share variables!

The shared variables must take the form of matrices, a bigmemory con-
straint. Of course, one can still have a shared scalar, as a 1 × 1 matrix. A
shared matrix will have the class ”big.matrix”.

Note that one must use brackets in referencing the shared matrices. For
instance, to print the shared matrix m, write

print (m[,])

rather than

print (m)

The latter just prints out the location of the shared memory object.

4.4 Example: Matrix Multiplication

The standard “Hello World” example of the parallel processing community
is matrix multiplication. Here is the Rdsm code, along with a small test.

6Though Rdsm is intended to run on shared-memory machines, bigmemory also
enables shared variables with storage in shared disk files. Thus potentially, Rdsm could
also be used to provide the shared-memory world view on a distributed system, e.g.
clusters. However, this would require use of a shared file system that does appropriate
updating, which is not the case for those in common usage, such as the Network File
System (NFS). Thus as of this writing, Rdsm offers this only as an experimental feature.

86 CHAPTER 4. SHARED MEMORY: R

4.4.1 The Code

matrix m u l t i p l i c a t i o n ; the product u %∗% v i s
computed on the snow c l u s t e r c l s , and w r i t t e n
in−p l a c e in w; w i s a b i g . matrix o b j e c t

mmulthread <− function (u , v ,w) {
require (p a r a l l e l)
determine which rows t h i s thread w i l l handle
myidxs <−

s p l i t I n d i c e s (nrow(u) ,
myinfo$nwrkrs) [[myinfo$ id]]

compute t h i s thread ’ s p o r t i o n o f the product
w[myidxs ,] <− u [myidxs ,] %∗% v [,]
0 # don ’ t do e x p e n s i v e re turn o f r e s u l t

}

t e s t on snow c l u s t e r c l s
t e s t <− function (c l s) {

i n i t Rdsm
mgr in i t (c l s)
s e t up shared v a r i a b l e s a , b , c ,
mgrmakevar (c l s , ”a” , 6 , 2)
mgrmakevar (c l s , ”b” ,2 , 6)
mgrmakevar (c l s , ”c” , 6 , 6)
f i l l in some t e s t data
a [,] <− 1 :12
b [,] <− rep (1 , 12)
g i v e the t h r e a d s the f u n c t i o n to be run
c lu s t e rExpor t (c l s , ”mmulthread”)
run i t
c lusterEvalQ (c l s , mmulthread (a , b , c))
print (c [,]) # not p r i n t (c) !

}

Here is a test run:

> l ibrary (p a r a l l e l)
> c2 <− makeCluster (2) # 2 t h r e a d s
> t e s t (c2)

[, 1] [, 2] [, 3] [, 4] [, 5] [, 6]
[1 ,] 8 8 8 8 8 8
[2 ,] 10 10 10 10 10 10

4.4. EXAMPLE: MATRIX MULTIPLICATION 87

[3 ,] 12 12 12 12 12 12
[4 ,] 14 14 14 14 14 14
[5 ,] 16 16 16 16 16 16
[6 ,] 18 18 18 18 18 18

Here we first set up a two-node snow cluster c2. Remember, with snow,
clusters are not necessarily physical clusters, and can be multicore ma-
chines. For Rdsm the latter is the case.

The code test() is run as the snow manager. It creates shared variables,
then launches the Rdsm threads via snow’s clusterEvalQ().

4.4.2 Analysis

The setup phase in Rdsm here involves the following.

First, Rdsm’s mgrinit() is called to initialize the Rdsm system, after
which we use the Rdsm function mgrmakevar() to create three matrices
in shared memory, a, b and c (a and b could have been simple R globals,
rather than Rdsm variables). This action will distribute the necessary
keys and the sizes of the shared objects to the snow worker nodes, i.e., the
Rdsm. threads.

Then snow’s clusterEvalQ() is used to launch the threads. This function
is the analog of R’s evalq(), but it is run on the worker nodes, using their
environments. On a quadcore machine running four Rdsm threads, for
example, the above call

c lusterEvalQ (c l s , mmulthread (a , b , c))

will cause

mmulthread (a , b , c)

to run on all threads at once (though it probably won’t be the case that
all threads are running the same line of code simultaneously). Note that
we first needed to ship the function mmulthread() itself to the threads,
again because clusterEvalQ() runs our specified command in the context
of the environments at the threads.

It is crucial to keep in mind the sharing, e.g. of c[,]. The manager acquires
the key for a chunk of memory containing this variable and shares it with
the workers, via mgrmakevar(). The workers write to that memory, and
due to sharing—remember, sharing means they are all accessing the same
physical memory locations—the manager can then read it and print out
c[,].

88 CHAPTER 4. SHARED MEMORY: R

4.4.3 The Code

Now, how does mmulthread() work? The basic idea is break the rows
of the argument matrix u into chunks, and have each thread work on one
chunk.7 Say there are 1000 rows, and we have a quadcore machine (on
which we’ve set up a four-node snow cluster). Thread 1 would handle
rows 1-250, thread 2 would work on rows 251-500 and so on.

The chunks are assigned in the code

myidxs <−
s p l i t I n d i c e s (nrow(u) , myinfo$nwrkrs) [[myinfo$ id]]

calling the snow function splitIndices(). For example, the value of myidxs
at thread 2 will be 251:500. The built-in Rdsm variable myinfo is an R
list containing nwrkrs, the total number of threads, and id, the ID num-
ber of the thread executing the above displayed line. On thread 2 in our
example here, those numbers will be 4 and 2, respectively.

The reader should note the “me, my” point of view that is key to threads
programming. Remember, each of the threads is (more or less) simulta-
neously executing mmulthread(). So, the code in that function must be
written from the point of view of a particular thread. That’s why we put
the “my” in the variable name myidxs. We’re writing the code from the
anthropomorphic view of imagining ourselves as a particular thread exe-
cuting the code. That thread is “me,” and so the row indices are “my”
indices, hence the name myidxs.

Each thread multiplies v by the thread’s own chunk of u, placing the result
in the corresponding chunk of w:

w[myidxs ,] <− u [myidxs ,] %∗% v [,]

As noted in Section 4.2, unlike a message-passing approach, here we have no
shipping of objects back and forth among threads; the objects are “already
there,” in shared memory, and we access them simply and directly.

Note in particular that the product matrix w is NOT part of the return
value of the function. Instead, it is simply there in the matrix that the
manager specified for w in the call to mmulthread(), in this case c. Hence
in the code

c lusterEvalQ (c l s , mmulthread (a , b , c))
print (c [,])

7Some parallel algorithms partition both u and v. See Chapter 12.

4.4. EXAMPLE: MATRIX MULTIPLICATION 89

we can simply print c to see the product of a and b.

4.4.4 A Closer Look at the Shared Nature of Our Data

As noted, the matrix w is not returned to the caller. Instead, it is simply
available directly as a shared variable to all parties who hold the key for
that variable.

Let’s look at that a little more closely, running our test code through the
debugger:

> debug(t e s t)
> t e s t (c2)
debugging in : t e s t (c2)
. . .
debug at MM. tex#16: mgrmakevar (c l s , ”c ” , 6 , 6)
Browse [2]> n
debug at MM. tex#17: a [,] <− 1:12
Browse [2]> print (c)
An ob j e c t o f class ” big . matrix ”
S l o t ” address ” :
<po in t e r : 0 x105804ce0>

As mentioned, Rdsm variables are ”big.matrix” objects, an R S4 class.
We see above that the ”big.matrix” class consists primarily of a memory
address, 0x105804ce0 in this case, which is the location of the actual shared
matrix (and its associated information, such as the numbers of rows and
columns).8 Let’s see who accesses that memory address:

The line

c lusterEvalQ (c l s , mmulthread (a , b , c))

executed by the manager, commands each worker to execute

mmulthread (a , b , c)

When they do so, the variable c in the call will be w within mmulthread(),
and thus references to w will again be via that same address, 0x105804ce0.

8Readers who are well-versed in languages such as C may be interested in how the
address is actually used. Basically, in R the array-access operations are themselves func-
tions, such as the built-in function ”[”. As such, they can be overridden, as with opera-
tor overloading in C++, and bigmemory uses this approach to redirect expressions like
w[2,5] to shared memory accesses. An earlier version of Rdsm, developed independently
around the time bigmemory was being written, took the same approach.

90 CHAPTER 4. SHARED MEMORY: R

As you can see, then, all of the threads are indeed sharing this matrix, as
is the manager, since they are all accessing this spot in memory. So for
example if any one of these entities writes to that shared object, the others
will see the new values.

A side note: “Traditionally,” R is a functional language, (mostly) free of
side effects. To explain this concept, consider a function call f(x). Any
change that f() makes to x does not change the value of x in the caller.
If it could change, this would be a side effect of the call, a commonplace
occurrence in languages such as C/C++ but not in R. If we do want x to
change in the caller, we must write f() to reurn the changed value of x, and
then in the caller, reassign it, e.g.

x <− f (x)

As seen above, the bigmemory package, and thus Rdsm, do produce side
effects.9

R has never been 100% free of side effects, e.g. due to use of the <<− oper-
ator, and the number of exceptions has been increasing. The bigmemory
and data.table packages are examples, as is R’s new reference classes. The
motivation of allowing side effects is to avoid expensive copying of a large
object when one changes only one small component of it. This is especially
important for our parallel processing context; as mentioned earlier, needless
copying of large objects can rob a parallel program of its speed.

The Rdsm package includes instructions for saving a key to a file and then
loading it from another invocation of R on the same machine. The latter
will then be able to access the shared variable as well. For example, one
might write a Web crawler application, collecting Web data and storing it
in shared member, and meanwhile monitor it interactively via a separate
R process.

4.4.5 Timing Comparison

We won’t do extensive timing experiments here, but let’s just check that
the code is indeed providing a speedup:

> n <− 5000
> m <− matrix (runif (n ˆ2) , ncol=n)
> system . time (m %∗% m)

user system e lapsed

9Indeed, this is one of bigmemory’s major user attractions, according to bigmem-
ory coauthor Michael Kane.

4.5. SHARED MEMORY PERFORMANCE ADVANTAGE 91

345.077 0 .220 346.356
> c l s <− makeCluster (4)
> mgr in i t (c l s)
> mgrmakevar (c l s , ”msh” ,n , n)
> mgrmakevar (c l s , ”msh2” ,n , n)
> msh [,] <− m
> c lu s t e rExpor t (c l s , ”mmulthread”)
> system . time (c lusterEvalQ (c l s ,

mmulthread (msh , msh , msh2)))
user system e lapsed

0 .004 0 .000 91 .863

So, a four-fold increase in the number of cores yielded almost a fourfold
increase in speed, very good.

4.4.6 Leveraging R

It was pointed out earlier that a good reason for avoiding C/C++ if possible
is to be able to leverage R’s powerful built-in operations. In this example,
we made use of R’s built-in matrix-multiply capability, in addition to its
ability to extract subsets of matrices.

This is a common strategy. To solve a big problem, we break it into smaller
ones of the same type, apply R’s tools to the small problems, and then
somehow combine to obtain the final result. This of course is a general
parallel processing design pattern, not just for R, but with a difference in
that here we need to find appropriate R tools. R is an interpreted language,
thus with a tendency to be slow, but its basic operations typically make use
of functions that are written in C, which are fast. Matrix multiplication is
such an operation, so our approach here does work well.

4.5 Shared Memory Can Bring A Performance
Advantage

In addition to the tendency of shared-memory code to be clearer and more
concise, in many applications we can reap a significant performance gain
as well. Message-passing systems by definition do a lot of copying of data,
sometimes very large amounts of data, that is often unnecessary. With
shared memory, we can read and write our needed data directly, as we saw
earlier.

92 CHAPTER 4. SHARED MEMORY: R

Note, though, that shared-memory access may involve hidden data copy-
ing. Each cache coherency transaction (Section 2.5.1.1) involves copying
of data, and if such transactions occur frequently, it can add up to large
amounts. Indeed, some of that copying may be unnecessary, say when a
cache block is brought in but never used much afterward. Thus shared-
memory programming is not necessarily a “win,” but it will become clear
below that it can be much faster for some applications, relative to other R
parallel packages such as snow, multicore, foreach and even Rmpi.

To see why, here is a version of mmulthread() using the snow package:

snowmmul <− function (c l s , u , v) {
require (p a r a l l e l)
idxs <− s p l i t I n d i c e s (nrow(u) , length (c l s))
mmulchunk <−

function (idxchunk) u [idxchunk ,] %∗% v
r e s <− c lus te rApp ly (c l s , idxs , mmulchunk)
Reduce (rbind , r e s)

}

This test code was used:

testcmp <− function (c l s , n) {
require (Rdsm)
require (p a r a l l e l)
mgr in i t (c l s)
mgrmakevar (c l s , ”a” ,n , n)
mgrmakevar (c l s , ”c” ,n , n)
amat <− matrix (runif (n ˆ2) , ncol=n)
a [,] <− amat
c lu s t e rExpor t (c l s , ”mmulthread”)
print (system . time (c lusterEvalQ (c l s ,

mmulthread (a , a , c))))
print (system . time (cmat <−

nsnowmmul(c l s , amat , amat)))
}

It turns out that snow is considerably slower than the Rdsm implemen-
tation, as seen in Table 4.1. The results are for various sizes of n × n
matrices, and various numbers of cores. The machine had 16 cores, with a
hyperthreading degree of 2 (Section 1.4.5.2).

One of the culprits is the line

Reduce (rbind , r e s)

4.5. PERFORMANCE ADVANTAGE 93

n # cores Rdsm time Snow time
2000 8 2.604 4.754
3000 16 9.280 13.187
3000 24 6.660 17.390

Table 4.1: Rdsm vs. snow

in the snow version. This involves a lot of copying of data, and possibly
worse, multiple allocation of large matrices, greatly sapping speed. This
is in stark contrast to the Rdsm case, in which the threads directly write
their chunked-multiplication results to the desired output matrix. Note
that the Reduce() operation itself is done serially, and though we might
try to parallelize that too, that itself would require lots of copying, and
thus may be difficult to make work well.

This of course was not a problem particular to snow. The same Reduce()
operation or equivalent would be needed with multicore, foreach (using
the .combine option), Rmpi and so on.10 Rdsm, by writing the results
directly to the desired output, avoids that problem.

It is clear that there are many applications with similar situations, in which
tools like snow etc. do a lot of serial data manipulation following the paral-
lel phase. In addition, iterative algorithms, such as k-means clustering (Sec-
tion 4.9) involve repeated alternating between a serial and parallel phase.
Rdsm should typically give faster speed than do the others in these appli-
cations.

On the other hand, some improvement can be obtained by using unlist()
instead of Reduce(), writing the last line of mmulthread() as11

matrix (unlist (r e s) , ncol=ncol (v))

Using this approach, the snow times for 16- and 24-node clusters on a
3000× 3000 matrix seen above were reduced to 11.600 and 13.792, respec-
tively (and were confirmed in subsequent runs not shown here).

The shared-memory vs. message-passing debate is a long-running one in the
parallel processing community. It has been traditional to argue that the

10With multicore, we would have a little less copying, as explained in Section 3.7.1.
11As suggested by M. Hannon.

94 CHAPTER 4. SHARED MEMORY: R

shared-memory paradigm doesn’t scale well (Section 2.9), but the advent
of modern multicore systems, especially GPUs, has done much to counter
that argument.

4.6 Locks and Barriers

These are two central concepts in shared-memory programming. To explain
them, we begin with the concept of race conditions.

4.6.1 Race Conditions and Critical Sections

Consider software to manage online airline reservations, and for simplicity,
assume there is no overbooking of seats. At some point in the program,
there will be a section consisting of one or more lines of code whose purpose
is to perform the actual reservation of a seat. The customer’s name and
other data are entered into the database for the given flight on the given
day. That section of code is known as a critical section, for the following
reason.

Imagine a scenario in which two customers who want the given flight on the
given day log in to the reservation system at about the same time. Each of
them will be running a separate thread of the program (though of course
they won’t be aware of this). Suppose only one seat is left on the flight.
It could happen that each thread finds that there is a seat remaining on
the flight, and thus each thread enters the critical section—and thus each
thread books its customer for the flight! One of the threads will be slightly
ahead of the other, and the later thread will overwrite what the earlier one
wrote. In other words, the first customer thinks she has successfully booked
the flight, but actually has not.

Now you can see why such a section of code is called “critical.” It is fraught
with danger, with the situation being known as a race condition. (Sorry,
you will be bombarded with terminology in the next few paragraphs.)

We say that the problem with the flight reservations above stemmed from
a failure to update the reservation records atomically. The Greek word
atom means “indivisible,” and the allusion here is that trouble may arise
if we “divide” i.e., separate, the read (checking for availability of a seat)
and write (committing the seat to the customer) phases in the critical
section, as opposed to doing both phases in one indivisible action. Doing
that atomically would mean that a thread does the read and write as an

4.6. LOCKS AND BARRIERS 95

indivisible pair, without having any other thread being able to act between
the two phases, thus eliminating the danger.

4.6.2 Locks

What we need to avoid race conditions is a mechanism that will limit ac-
cess to the critical section to only one thread at a time, known as mutual
exclusion. A common mechanism is a lock variable or mutex. Most thread
systems include functions lock() and unlock(), applied to a lock variable.
Just before a critical section, one inserts a call to lock(), and we follow the
section with a call to unlock(). Execution will work as follows.

Suppose the lock variable is already locked, due to some other thread cur-
rently being inside the critical section. Then the thread making the call
to lock() will block, meaning that it will just freeze up for the time being,
not returning yet. When the thread currently in the critical section finally
exits, it will call unlock(), and the blocked thread will now unblock: This
thread will enter the critical section, and relock the lock. (Of course, if
several threads had been waiting at the lock, only one will succeed, and the
others will continue waiting.)

To make this concrete, consider this toy example, in Rdsm. We’ve initial-
ized Rdsm as a two-thread system, c2, and set up a 1× 1 shared variable
tot. The code simply repeatedly adds 1 to the total, n times, and thus
should have a final value of n.

t h i s f u n c t i o n i s not r e l i a b l e ; i f 2 t h r e a d s both t r y
to increment the t o t a l a t about the same time , they
cou ld i n t e r f e r e wi th each o the r
s <− function (n) {

for (i in 1 : n) {
to t [1 , 1] <− to t [1 , 1] + 1

}
}

l ibrary (p a r a l l e l)
c2 <− makeCluster (2)
c lu s t e rExpor t (c2 , ” s ”)
mgr in i t (c2)
mgrmakevar (c2 , ” to t ” , 1 , 1)
to t [1 , 1] <− 0
c lusterEvalQ (c2 , s (1000))
to t [1 , 1] # shou ld be 2000 , but l i k e l y f a r from i t

96 CHAPTER 4. SHARED MEMORY: R

I did two runs of this. On the first one, the final value of tot[1,1] was 1021,
while the second time it was 1017. Neither time did it come out 2000 as it
“should.” Moreover, the result was random.

The problem here is that the action

to t [1 , 1] <− to t [1 , 1] + 1

is not atomic. We could have the following sequence of events:

thread 1 reads tot[1,1], finds it to be 227

thread 2 reads tot[1,1], finds it to be 227

thread 1 writes 228 to tot[1,1]

thread 2 writes 228 to tot[1,1]

Here, tot[1,1] should be 229, but is only 228. No wonder in the experiments
above, the total turned out to fall far short of the correct number, 2000.

But with locks, everything works fine. Continuing the above example, we
run the code

here i s the r e l i a b l e vers ion , surrounding the
increment by l o c k and unlock , so on ly 1 thread
can e x e c u t e i t a t once
s1 <− function (n) {

for (i in 1 : n) {
rdsmlock (” t o t l o c k ”)
to t [1 , 1] <− to t [1 , 1] + 1
rdsmunlock (” t o t l o c k ”)

}
}

mgrmakelock (c2 , ” t o t l o c k ”)
to t [1 , 1] <− 0
c lu s t e rExpor t (c2 , ” s1 ”)
c lusterEvalQ (c2 , s1 (1000))
to t [1 , 1] # w i l l p r i n t out 2000 , the c o r r e c t number

Here we call the Rdsm function mgrmakelock() to create a lock variable
(we need to name it, as we may have several lock variables in a program),
and then call Rdsm’s lock and unlock functions before and after adding
1 to the current total. Those latter two calls render the add-1-to-total
operation atomic, and resulting code works properly.

4.7. EXAMPLE: MAXIMAL BURST IN A TIME SERIES 97

4.6.3 Barriers

Another key structure is that of a barrier, which is used to synchronize
all the threads. Suppose for instance that we need one thread to perform
some special action, but that we need to have the other threads wait for
that action to be performed. The threads system will provide a function to
call that accomplishes this. In Rdsm, this function is named barr(), and
when a thread calls it, the thread will block until all threads have called it.
Afterward, they all proceed to the next line of code.

Note that internally a barrier needs to be implemented with a lock. You,
the application programmer, won’t see the lock (unless you’re curious),
but you do need to be aware that it is there, as locks adversely impact
performance.

4.7 Example: Maximal Burst in a Time Se-
ries

Consider a time series of length n. We may be interested in bursts, periods
in which a high average value is sustained. We might stipulate that we look
only at periods of length k consecutive points, for a user-specified k. So,
we wish to find the period of length k that has the maximal mean value.

4.7.1 The Code

Once again, let’s leverage the power of R. The zoo time series package
includes a function rollmean(w,m), which returns all the means of blocks
of length k, i.e., what are usually called moving averages—just what we
need.

Here is the code:

Rdsm code to f i n d max b u r s t in a time s e r i e s ;

arguments :

x : data v e c t o r
k : b l o c k s i z e
mas : s c r a t c h space , shared , 1 x (l e n g t h (x)−1)
r s l t s : 2− t u p l e showing the maximum b u r s t va lue ,
and where i t s t a r t s ; shared , 1 x 2

98 CHAPTER 4. SHARED MEMORY: R

maxburst <− function (x , k , mas , r s l t s) {
require (Rdsm)
require (zoo)
determine t h i s thread ’ s chunk o f x
n <− length (x)
myidxs <− g e t i dx s (n−k+1)
my f i r s t <− myidxs [1]
mylast <− myidxs [length (myidxs)]
mas [1 , my f i r s t : mylast] <−

ro l lmean (x [my f i r s t : (mylast+k−1)] , k)
make sure a l l t h r e a d s have w r i t t e n to mas
barr ()
one thread must do wrapup , say thread 1
i f (myinfo$ id == 1) {

r s l t s [1 , 1] <− which .max(mas [,])
r s l t s [1 , 2] <− mas [1 , r s l t s [1 , 1]]

}
}

t e s t <− function (c l s) {
require (Rdsm)
mgr in i t (c l s)
mgrmakevar (c l s , ”mas” ,1 , 9)
mgrmakevar (c l s , ” r s l t s ” , 1 , 2)
x <<− c (5 , 7 , 6 , 20 , 4 , 14 , 11 , 12 , 15 , 17)
c lu s t e rExpor t (c l s , ”maxburst”)
c lu s t e rExpor t (c l s , ”x”)
c lusterEvalQ (c l s , maxburst (x , 2 , mas , r s l t s))
print (r s l t s [,]) # not p r i n t (r s l t s) !

}

The division of labor here involves assigning different chunks of the data to
different Rdsm threads. To determine the chunks, we could call snow’s
splitIndices() as before, but actually Rdsm provides a simpler wrap-
per for that, getidxs(), which we’ve called here, to determine where this
thread’s chunk begins and ends:

n <− length (x)
myidxs <− g e t i dx s (n−k+1)
my f i r s t <− myidxs [1]
mylast <− myidxs [length (myidxs)]

4.8. EXAMPLE: TRANSFORMING AN ADJACENCY MATRIX 99

We then call rollmean() on this thread’s chunk, and write the results into
this thread’s section of mas:

mas [1 , my f i r s t : mylast] <−
ro l lmean (x [my f i r s t : (mylast+k−1)] , k)

When all the threads are done executing the above line, we will be ready
to combine the results. But how will we know when they’re done? That’s
where the barrier comes in. We call barr() to make sure everyone is done,
and then designate one thread to then combine the results found by the
threads:

barr () # make sure a l l t h r e a d s have w r i t t e n to mas
i f (myinfo$ id == 1) {

r s l t s [1 , 1] <− which .max(mas [,])
r s l t s [1 , 2] <− mas [1 , r s l t s [1 , 1]]

}

4.8 Example: Transforming an Adjacency Ma-
trix

Here is another example of the use of barriers, this one more involved, both
because the computation is a little more complex, and because we need two
variables this time.

Say we have a graph with an adjacency matrix


0 1 0 0
1 0 0 1
0 1 0 1
1 1 1 0

 (4.1)

For example, the 1s in row 1, column 2 and row 4, column 1, signify that
there is an edge from vertex 1 to vertex 2, and one from vertex 4 to vertex
1. We’d like to transform this to a two-column matrix that displays the

100 CHAPTER 4. SHARED MEMORY: R

links, in this case



1 2
2 1
2 4
3 2
3 4
4 1
4 2
4 3


(4.2)

For instance, the (4,3) in the last row means there is an edge from vertex
4 to 3, corresponding to the 1 in row 4, column 3 of the adjacency matrix.

4.8.1 The Code

Here is Rdsm code for this:

i n p u t s a graph adjacency matrix , and o u t p u t s a
two−column matrix l i s t i n g the edges emanating from
each ver tex , each row of the form (f v e r t , t v e r t) ,
i . e . ”from v e r t e x ” and ” to v e r t e x ”

arguments :
adj : adjacency matrix
l n k s : edges matrix ; shared , nrow (adj)ˆ2 rows
and 2 columns
counts : numbers o f edges found by each thread ;
shared ; 1 row , l e n g t h (c l s) columns
(i . e . 1 e lement per thread)

in t h i s vers ion , the matrix l n k s must be c r e a t e d
p r i o r to c a l l i n g f i n d l i n k s () ; s i n c e the number o f
rows i s unknown a p r i o r i , one must a l l o w f o r the
worst case , nrow (adj)ˆ2 rows ; a f t e r the run , the
number o f a c t u a l rows w i l l be in
counts [1 , l e n g t h (c l s)] , so t h a t the e x c e s s
remaining rows can be removed

f i n d l i n k s <− function (adj , lnks , counts) {
require (p a r a l l e l)
nr <− nrow(adj)

4.8. EXAMPLE: ADJACENCY MATRIX 101

g e t t h i s thread ’ s a s s i g n e d p o r t i o n o f the
rows o f adj
myidxs <− g e t i dx s (nr)

determine where the 1 s are in t h i s thread ’ s
p o r t i o n o f adj ; f o r each row number i in myidxs ,
an element o f myout w i l l record the column
l o c a t i o n s o f the 1 s in t h a t row , i . e . record the
edges out o f v e r t e x i
myout <− apply (adj [myidxs ,] , 1 ,

function (onerow) which(onerow==1))

t h i s thread w i l l now form i t s p o r t i o n o f lnks ,
s t o r i n g in tmp
tmp <− matrix (nrow=0,ncol=2)
my1strow <− myidxs [1]
for (idx in myidxs)

tmp <− rbind (tmp , convert1row (idx ,
myout [[idx−my1strow + 1]]))

we need to know where in l n k s to put tmp ; e . g .
i f t h r e a d s 1 and 2 f i n d 12 and 5 edges , then
thread 3 ’ s p o r t i o n o f l n k s w i l l beg in at row
12+5+1 = 18 o f l n k s

so , l e t ’ s f i n d cumula t ive edge sums , and
p l a c e them in counts
nmyedges <−

Reduce (sum, lapply (myout , length)) # my count
me <− myinfo$ id
counts [1 ,me] <− nmyedges
barr () # wait f o r a l l t h r e a d s to w r i t e to counts

determine where in l n k s the p o r t i o n o f thread
1 ends ; thread 2 ’ s p o r t i o n o f l n k s b e g i n s
immediate ly a f t e r thread 1 ’ s , e t c . , so we need
cumulat ive sums , which we ’ l l p l a c e in counts ;
we ’ l l have thread 1 perform t h i s task , though
any thread cou ld do i t
i f (me == 1) counts [1 ,] <− cumsum(counts [1 ,])
barr () # o t h e r s wai t f o r thread 1 to f i n i s h

t h i s thread now p l a c e s tmp in i t s proper

102 CHAPTER 4. SHARED MEMORY: R

p o s i t i o n w i t h i n l n k s
mystart <− i f (me == 1) 1 else counts [1 ,me−1] + 1
myend <− mystart + nmyedges − 1
lnks [mystart : myend ,] <− tmp

0 # don ’ t do e x p e n s i v e re turn o f r e s u l t
}

i f , say , row 5 in adj has 1 s in columns 2 , 3 and 8 ,
t h i s f u n c t i o n r e t u r n s the matrix
5 2
5 3
5 8
convert1row <− function (rownum , c o l s w i t h 1 s) {

i f (i s . null (c o l s w i t h 1 s)) return (NULL)
cbind (rownum , c o l s w i t h 1 s) # use r e c y c l i n g

}

t e s t <− function (c l s) {
require (Rdsm)
mgr in i t (c l s)
mgrmakevar (c l s , ”x” ,6 , 6)
mgrmakevar (c l s , ” lnks ” ,36 ,2)
mgrmakevar (c l s , ” counts ” ,1 , length (c l s))
x [,] <− matrix (sample (0 : 1 , 3 6 , replace=T) , ncol=6)
c lu s t e rExpor t (c l s , ” f i n d l i n k s ”)
c lu s t e rExpor t (c l s , ” convert1row ”)
c lusterEvalQ (c l s , f i n d l i n k s (x , lnks , counts))
print (lnks [1 : counts [1 , length (c l s)] ,])

}

The division of labor here involves assigning different chunks of rows of the
adjacency matrix to different Rdsm threads. We first partition the rows,
as before, then determine the locations of the 1s in this thread’s chunk of
rows:

myidxs <− g e t i dx s (nr)
myout <− apply (a [myidxs ,] , 1 , function (rw) which(rw==1))

The R list myout will now give a row-by-row listing of the column numbers
of all the 1s in the rows of this thread’s chunk. Remember, our ultimate
output matrix, lnks, will have one row for each such 1, so the information
in myout will be quite useful.

4.8. EXAMPLE: ADJACENCY MATRIX 103

Here is how it uses that information, for a given row:

convert1row <− function (rownum , c o l s w i t h 1 s) {
i f (i s . null (c o l s w i t h 1 s)) return (NULL)
cbind (rownum , c o l s w i t h 1 s) # use r e c y c l i n g

}

This function returns a chunk that will eventually go into lnks, specifically
the chunk corresponding to row rownum in adj. The code to form all such
chunks for our given thread is

tmp <− matrix (nrow=0,ncol=2)
my1strow <− myidxs [1]
for (idx in myidxs) tmp <−

rbind (tmp , convert1row (idx , myout [[idx−my1strow + 1]]))

Note that here the code needed to recognize the fact that the information
for row number idx in adj is stored in element idx - my1strow + 1 of
myout.

Now that this thread has computed its portion of lnks, it must place it
there. But in order to do so, this thread must know where in lnks to start
writing. And for that, this thread needs to know how many 1s were found
by threads prior to it. If for instance thread 1 finds eight 1s and thread 2
finds three, then thread 3 must start writing at row 8 + 3 + 1 = 12 in lnks.
Thus we need to find the overall 1s counts (across all rows of a thread) for
each thread,

nmyedges <− Reduce (sum, lapply (myout , length))

and then need to find cumulative sums, and share them. To do this, we’ll
have (for instance) thread 1 find those sums, and place them in our shared
variable counts:

me <− myinfo$ id
counts [1 ,me] <− nmyedges
barr ()
i f (me == 1) {

counts [1 ,] <− cumsum(counts [1 ,])
}
barr ()

Note the barrier calls just before and just after thread 1. The first call is
needed because thread 1 can’t start finding the cumulative sums before all
the individual counts are ready. Then we need the second barrier, because

104 CHAPTER 4. SHARED MEMORY: R

all the threads will be making use of the cumulative sums, and we need to
be sure those sums are ready first. These are typical examples of barrier
use.

Now that our thread knows where in lnks to write its results, it can go
ahead:

mystart <− i f (me == 1) 1 else counts [1 ,me−1] + 1
myend <− mystart + nmyedges − 1
lnks [mystart : myend ,] <− tmp

4.8.2 Overallocation of Memory

A problem above is having to allocate the lnks matrix to handle the worst
case, thus wasting space and execution time. The problem is that we don’t
know in advance the size of our “output,” in this case the argument lnks.
In our little example above, the adjacency matrix was of size 4x4, while
the edges matrix was 7x2. We know the number of columns in the edges
matrix will be 2, but the number of rows is unknown a priori.

Note that the user can determine the number of “real” rows in lnks by
inspecting counts[1,length(cls)] after the call returns, as seen in the test
code. One could copy the “real” rows to another matrix, then deallocate
the big one.

One alternate approach would be to postpone allocation until we know
how big the lnks matrix needs to be, which we will know after the cumu-
lative sums in counts are calculated. We could have thread 1 then create
the shared matrix lnks, by calling bigmemory directly rather than us-
ing mgrmakevar(). To distribute the shared-memory key for this matrix,
thread 1 would save the bigmemory descriptor to a file, then have the
other threads get access to lnks by loading from the file.

Actually, this problem is common in parallel processing applications. We
will return to it in Section 5.4.2.

4.8.3 Timing Experiment

For comparison, here is a serial version of the code:

> ge t l i nk snonpar
function (a , lnks) {

nr <− nrow(a)

4.8. EXAMPLE: ADJACENCY MATRIX 105

myout <− apply (a [,] , 1 , function (rw) which(rw==1))
nmyedges <− Reduce (sum, lapply (myout , length))
l nk s idx <− 1
for (idx in 1 : nr) {

jdx <− idx
myoj <− myout [[jdx]]
endwrite <− l nk s idx + length (myoj) − 1
i f (! i s . null (myoj)) {

l nks [l nk s idx : endwrite ,] <− cbind (idx , myoj)
}
l nk s idx <− endwrite + 1

}
0

}

> n <− 10000
> system . time (f i n d l i n k s (x , lnks))

user system e lapsed
26 .170 1 .224 27 .516

(For convenience, we are still using Rdsm to set up the shared variables,
though we run in non-Rdsm code.)

Now try the parallel version:

> c l s <− makeCluster (4)
> mgr in i t (c l s)
> mgrmakevar (c l s , ” counts ” ,1 , length (c l s))
> mgrmakevar (c l s , ”x” ,n , n)
> mgrmakevar (c l s , ” lnks ” ,n ˆ2 ,2)
> x [,] <− matrix (sample (0 : 1 , nˆ2 , replace=T) , ncol=n)
> c lu s t e rExpor t (c l s , ” f i n d l i n k s ”)
> c lu s t e rExpor t (c l s , ” convert1row ”)
> system . time (c lusterEvalQ (c l s , f i n d l i n k s (x , lnks , counts)))

user system e lapsed
0 .000 0 .000 7 .783

So, the parallel code did indeed speed things up.

106 CHAPTER 4. SHARED MEMORY: R

4.9 Example: k-Means Clustering

In discussion of parallel computation for data science, an example appli-
cation almost as common as matrix multiplication is k-means clustering.
The goal is to form k groups from our data matrix, hopefully in a way that
makes visual (or other) sense. Let’s see how that can be implemented in
Rdsm.

The general k-means method itself is quite simple, using an iterative algo-
rithm. At any step during the iteration process, the k groups are summa-
rized by their centroids.12 We iterate the following:

1. For each data point, i.e., each row of our data matrix, determine
which centroid this point is closest to.

2. Add this data point to the group corresponding to that centroid.

3. After all data points are processed in this manner, update the cen-
troids to reflect the current group memberships.

4. Next iteration.

This example will bring in a concept in shared-memory work that didn’t
arise in our matrix multiplication example, related to the phrase, “After all
data points are processed...” in step 3. Some other new concepts will come
up as well, all to be explained below.

4.9.1 The Code

So, here is the code, again with a small test function:

k−means c l u s t e r i n g on the data matrix x , wi th
k c l u s t e r s and ni i t e r a t i o n s ; f i n a l c l u s t e r
c e n t r o i d s p la ced in c n t r d s

i n i t i a l c e n t r o i d s taken to be k randomly chosen
rows o f x ; i f a c l u s t e r becomes empty , i t s new
c e n t r o i d w i l l be a random row o f x

l ibrary (Rdsm)

12If we have m variables, then the centroid of a group is the m-element vector of means
of those variables within this group.

4.9. EXAMPLE: K-MEANS CLUSTERING 107

arguments :
x : data matrix x ; shared
k : number o f c l u s t e r s
ni : number o f i t e r a t i o n s
c n t r d s : c e n t r o i d s matrix ; row i i s c e n t r o i d i ;
shared , k by nco l (x)
c i n i t : o p t i o n a l i n i t i a l v a l u e s f o r c e n t r o i d s ;
k by nco l (x)
sums : s c r a t c h matrix ; sums [j ,] con t a in s count ,
sum f o r c l u s t e r j ; shared , k by 1+nco l (x)
l c k : l o c k v a r i a b l e ; shared

kmeans <− function (x , k , ni , cntrds , sums , lck , c i n i t=NULL) {
require (p a r a l l e l)
require (pd i s t)
nx <− nrow(x)
g e t my a s s i g n e d p o r t i o n o f x
myidxs <− g e t i dx s (nx)
myx <− x [myidxs ,]
random i n i t i a l c e n t r o i d s i f none s p e c i f i e d
i f (i s . null (c i n i t)) {

i f (myinfo$ id == 1)
cntrds [,] <− x [sample (1 : nx , k , replace=F) ,]

barr ()
} else cntrds [,] <− c i n i t

mysum() sums the rows in myx corresponding to the
i n d i c e s i d x s ; we a l s o produce a count o f t h o s e rows
mysum <− function (idxs , myx) {

c (length (idxs) , colSums (myx [idxs , , drop=F]))
}
for (i in 1 : n i) { # ni i t e r a t i o n s

c l u s t e r node 1 i s sometimes asked to do
some ” housekeep ing ”
i f (myinfo$ id == 1) {

sums [] <− 0
}
o the r nodes wai t f o r node 1 to do i t s work
barr ()
f i n d d i s t a n c e s from my rows o f x to the
c e n t r o i d s , then f i n d which c e n t r o i d i s c l o s e s t
to each such row

108 CHAPTER 4. SHARED MEMORY: R

ds t s <−
matrix (pd i s t (myx , cnt rds [,]) @dist , ncol=nrow(myx))

n r s t <− apply (dsts , 2 , which .min)
n r s t [i] c on t a ins the index o f the n e a r e s t
c e n t r o i d to row i in myx
tmp <− tapply (1 :nrow(myx) , nrst , mysum, myx)
in the above , we g a t h e r the o b s e r v a t i o n s
in myx whose c l o s e s t c e n t r o i d i s c e n t r o i d j ,
and f i n d t h e i r sum , p l a c i n g i t in # tmp [j] ;
the l a t t e r w i l l a l s o have the count o f such
o b s e r v a t i o n s # in i t s l e a d i n g component ;
next , we need to add t h a t to sums [j ,] ,
as an atomic o pera t io n
r ea l rdsmlock (l ck)
j v a l u e s in tmp w i l l be s t r i n g s , so conver t
for (j in as . integer (names(tmp))) {

sums [j ,] <− sums [j ,] + tmp [[j]]
}
rea l rdsmunlock (l ck)
barr () # wait f o r sums [,] to be ready
i f (myinfo$ id == 1) {

update c e n t r o i d s , us ing a random
data p o i n t i f a c l u s t e r becomes empty
for (j in 1 : k) {

update c e n t r o i d f o r c l u s t e r j
i f (sums [j , 1] > 0) {

cntrds [j ,] <− sums [j ,−1] / sums [j , 1]
} else cntrds [j] <<− x [sample (1 : nx , 1) ,]

}
}

}
0 # don ’ t do e x p e n s i v e re turn o f r e s u l t

}

t e s t <− function (c l s) {
l ibrary (p a r a l l e l)
mgr in i t (c l s)
mgrmakevar (c l s , ”x” ,6 , 2)
mgrmakevar (c l s , ” cnt rds ” , 2 , 2)
mgrmakevar (c l s , ”sms” ,2 , 3)
mgrmakelock (c l s , ” l ck ”)
x [,] <− matrix (sample (1 : 2 0 , 1 2) , ncol=2)
c lu s t e rExpor t (c l s , ”kmeans”)

4.9. EXAMPLE: K-MEANS CLUSTERING 109

c lusterEvalQ (c l s , kmeans (x , 2 , 1 , cntrds , sms , ” l ck ” ,
c i n i t=rbind (c (5 , 5) , c (1 5 , 1 5))))

}

t e s t 1 <− function (c l s) {
mgr in i t (c l s)
mgrmakevar (c l s , ”x” ,10000 ,3)
mgrmakevar (c l s , ” cnt rds ” , 3 , 3)
mgrmakevar (c l s , ”sms” ,3 , 4)
mgrmakelock (c l s , ” l ck ”)
x [,] <− matrix (rnorm(30000) , ncol=3)
r i <− sample (1 :10000 ,3000)
x [r i , 1] <− x [r i , 1] + 5
r i <− sample (1 :10000 ,3000)
x [r i , 2] <− x [r i , 2] + 5
c lu s t e rExpor t (c l s , ”kmeans”)
c lusterEvalQ (c l s , kmeans (x , 3 , 5 0 , cntrds , sms , ” l ck ”))

}

Let’s first discuss the arguments of kmeans(). Our data matrix is x, which
is described in the comments as a shared variable (on the assumption that
it will often be such) but actually need not be.

By contrast, cntrds needs to be shared, as the threads repeatedly use it as
the iterations progress. We have thread 1 writing to this variable,

i f (myinfo$ id == 1) {
for (j in 1 : k) {

i f (sums [j , 1] > 0) {
cntrds [j ,] <<− sums [j ,−1] / sums [j , 1]

} else cntrds [j] <<− x [sample (1 : nx , 1) ,]
}

}

at the end of each iteration, and all threads reading it:

d s t s <− matrix (pd i s t (myx , cnt rds [,]) @dist ,
ncol=nrow(myx))

If cntrds were not shared, the whole thing would fall apart. When thread
1 would write to it, it would become a local variable for that thread, and
the new value would not become visible to the other threads. Note that as
in our previous examples, we store our function’s final result, in this case
cntrds, in a shared variable, rather than as a return value.

110 CHAPTER 4. SHARED MEMORY: R

The argument sums is also shared by necessity. It is only used to store
intermediate results, but again this variable is written to by some threads
and subsequently read by others, hence must be shared.

Another argument to kmeans() that is shared is lck, a lock variable, to
be discussed below.

So, let’s look at the actual code, starting with

g e t my a s s i g n e d p o r t i o n o f x
myidxs <− g e t i dx s (nx)
myx <− x [myidxs ,]

Once again our approach will be to break the data matrix into chunks of
rows. Each thread will handle one chunk, finding distances from rows in its
chunk to the current centroids. How is the above code preparing for this?

Note again the “me, my” point of view here, pointed out in Section 4.4 and
present in almost any threads function. The code here is written from the
point of view of a particular thread. So, the code first needs to determine
this thread’s rows chunk.

Why have this separate variable, myx? Why not just use x[myidxs,]?
First, having the separate variable results in less cluttered code. But sec-
ondly, repeated access to x could cause a lot of costly cache misses and
cache coherency actions.

Next we see another use of barriers:

i f (i s . null (c i n i t)) {
i f (myinfo$ id == 1)

cntrds [,] <− x [sample (1 : nx , k , replace=F) ,]
barr ()

} else cntrds [,] <− c i n i t

We’ve set things up so that if the user does not specify the initial values of
the centroids, they will be set to k random rows of x. We’ve written the
code so that thread 1 performs this task, but we need the other threads
to wait until the task is done. If we didn’t do that, one thread might race
ahead and start accessing cntrds before it is ready. Our call to barr()
ensures that this won’t happen.

We have a similar use of a barrier at the beginning of the main loop:

i f (myinfo$ id == 1) {
sums [] <− 0

}

4.9. EXAMPLE: K-MEANS CLUSTERING 111

barr () # o the r nodes wai t f o r node 1 to do i t s work

We need to compute the distances to the various centroids from all the rows
in this thread’s portion of our data:

d s t s <−
matrix (pd i s t (myx , cnt rds [,]) @dist , ncol=nrow(myx))

R’s pdist package comes to the rescue! This package, which we saw in
Section 3.9, finds all distances from the rows of one matrix to the rows
of another, exactly what we need. So, here again, we are leveraging R!
(Indeed, an alternate way to parallelize the computation from what we are
doing here would be to parallelize pdist(), say using Rdsm instead of
snow as before.)

Next, we leverage R’s which.min() function, which finds indices of minima
(not the minima themselves). We use this to determine the new group
memberships for the data points in myx:

n r s t <− apply (dsts , 2 , which .min)

Next, we need to collect the information in nrst into a more usable form,
in which we have, for each centroid, a vector stating the indices of all rows
in myx that now will belong to that centroid’s group. For each centroid,
we’ll also need to sum all such rows, in preparation for later averaging them
to find the new centroids.

Again, we can leverage R to do this quite compactly (albeit needing a bit
of thought):

mysum <− function (idxs , myx) {
c (length (idxs) , colSums (myx [idxs , , drop=F]))

}
. . .
tmp <− tapply (1 :nrow(myx) , nrst , mysum, myx)

But remember, all the threads are doing this! For instance, thread 1 is
finding the sum of its rows that are now closest to centroid 6, but thread
4 is doing the same. For centroid 6, we will need the sum of all such rows,
across all such threads.

In other words, multiple threads may be writing to the same row of sums
at about the same time. Race condition ahead! So, we need a lock:

l o ck (l ck)
for (j in names(tmp)) {

112 CHAPTER 4. SHARED MEMORY: R

j <− as . integer (j)
sums [j ,] <− sums [j ,] + tmp [[j]]

}
unlock (l ck)

The for loop here is a critical section. Without the restriction, chaos could
result. Say for example two threads want to add 3 and 8 to a certain total,
respectively, and that the current total is 29. What could happen is that
they both see the 29, and compute 32 and 37, respectively, and then write
those numbers back to the shared total. The result might be that the new
total is either 32 or 37, when it actually should be 40. The locks prevent
such a calamity.

A refinement would be to set up k locks, one for each row of sums. As noted
earlier, locks sap performance, by temporarily serializing the execution of
the threads. Having k locks instead of one might ameliorate the problem
here.

After all the threads are done with this work, we can have thread 1 compute
the new averages, i.e., the new centroids. But the key word in the last
sentence is “after.” We can’t let thread 1 do that computation until we are
sure that all the threads are done. This calls for using a barrier:

barr ()
i f (myinfo$ id == 1) {

for (j in 1 : k) {
i f (sums [j , 1] > 0) {

cntrds [j ,] <<− sums [j ,−1] / sums [j , 1]
} else cntrds [j] <<− x [sample (1 : nx , 1) ,]

}
}

As noted earlier, the shared variable sums serves as storage for intermediate
results, not only sums of the data points in a group, but also their counts.
We can now use that information to compute the new centroids:

i f (myinfo$ id == 1) {
for (j in 1 : k) {

update c e n t r o i d f o r c l u s t e r j
i f (sums [j , 1] > 0) {

cntrds [j ,] <− sums [j ,−1] / sums [j , 1]
} else cntrds [j] <<− x [sample (1 : nx , 1) ,]

}
}

4.9. EXAMPLE: K-MEANS CLUSTERING 113

4.9.2 Timing Experiment

Let n denote the number of rows in our data matrix. With k clusters, we
have to compute nk distances per iteration, and then take n minima. So
the time complexity is O(nk).

This is not very promising for parallelization. In many cases O(n) (fixing
k here) does not provide enough computation to overcome overhead issues.
However, with our code here, there really isn’t much overhead. We copy
the data matrix just once,

myx <− x [myidxs ,]

and thus avoid problems of contention for shared memory and so on.

It appears that we can indeed get a speedup from our parallel version some
cases:

> x <− matrix (runif (100000∗25) , ncol=25)
> system . time (kmeans (x , 1 0)) # kmeans () , base R

user system e lapsed
8 .972 0 .056 9 .051

> c l s <− makeCluster (4)
> mgr in i t (c l s)
> mgrmakevar (c l s , ” cntrds ” ,10 ,25)
> mgrmakevar (c l s , ”sms” ,10 ,26)
> c lu s t e rExpor t (c l s , ”kmeans”)
> mgrmakevar (c l s , ”x” ,100000 ,25)
> x [,] <− x
> system . time (c lusterEvalQ (c l s ,

kmeans (x , 10 , 10 , cntrds , sms , l c k)))
user system e lapsed

0 .000 0 .000 4 .086

A bit more than 2X speedup for four cores, fairly good in view of the above
considerations.

Chapter 5

The Shared-Memory
Paradigm: C Level

As mentioned in Section 1.1, an increasingly common usage of R is “R+X,”
in which coding is done in a combination of R and some other language.
From the beginning of R, a common example has involved the C/C++
languages playing the role of X, and this is especially important for parallel
computation.

The standard method for programming directly on multicore machines, is to
use threads libraries, which are available for all modern operating systems.
On Unix-family systems (Linux, Mac), for example, the pthreads library
is quite popular.

The programmer calls functions in the threads library. For instance, one
calls the pthread mutex lock() function in pthreads to lock a lock vari-
able. However, this can become very tedious, so higher-level libraries were
developed specifically with parallel computation in mind, such as OpenMP,
Intel’s Threads Building Blocks and Cilk++, all of them cross-platform
software.1 Though the latter two are very powerful, here we mainly cover
OpenMP, the most popular of the three. We will use C as our language.

(Note to the reader: If you do not have background in C, you should still be
able to follow the code here fairly well, on the strength of your knowledge
of R programming. There is an introduction in Appendix C.)

1Currently OpenMP is not supported by clang, the default compiler for Macs. One
thus needs to install another compiler, such as gcc.

115

116 CHAPTER 5. SHARED-MEMORY: C

5.1 OpenMP

An OpenMP application still uses threads, but at a higher level of abstrac-
tion. One accesses OpenMP through C, C++ or FORTRAN. R users can
write an OpenMP application in one of those languages, and then call the
application from R, using either the .C() or .Call() functions available in
R for that purpose; if you do much of this, you should probably use the
Rcpp package as your interface. To keep things simple, we will stick to the
.C() interface here for the time being, and switch to .Call()/Rcpp after
a while. (In order to facilitate interface with R, we use C’s double type
instead of float.)

5.2 Example: Finding the Maximal Burst in
a Time Series

Consider a time series of length n, in the context of our example in Section
4.7, but with a modified goal, to find the period of at least k consecutive
time points that has the maximal mean value.

Denote our time series by x1, x2, ..., xn. Consider checking for bursts that
begin at xi. We could check for bursts of length k, k + 1, ..., n− i+ 1, i.e.,
about n−i−k different cases. Since i itself can take on O(n) values, the time
complexity of this application is, for fixed k and varying n, O(n2). This
growth rate in n suggests that this is a good candidate for parallelization.

5.2.1 The Code

Here is the code, written without an R interface for the time being.

We will discuss it in detail below, but you should glance through it first.
As you do, note the pragma lines, such as

#pragma omp s i n g l e

These are actually OpenMP directives, which instruct the compiler to insert
certain thread operations at that point.

For convenience, the code will assume that the time series values are non-
negative.

// OpenMP example program , Burst . c ; burst () f i n d s

5.2. EXAMPLE: MAXIMAL BURST IN A TIME SERIES 117

// per iod o f h i ghe s t burst o f a c t i v i t y in a time s e r i e s

#include <omp . h>
#include <s t d i o . h>
#include <s t d l i b . h>

// arguments for burst ()

// inputs :
// x : the time s e r i e s , assumed nonnegat ive
// nx : l ength o f x
// k : s h o r t e s t per iod o f i n t e r e s t
// outputs :
// startmax , endmax : p o i n t e r s to i n d i c e s o f
// the maximal−burst per iod
// maxval : po in t e r to maximal burst va lue

// f i n d s the mean o f the block between y [s] and y [e]
double mean(double ∗y , int s , int e) {

int i ; double to t = 0 ;
for (i = s ; i <= e ; i++) tot += y [i] ;
return to t / (e − s + 1) ;

}

void burst (double ∗x , int nx , int k ,
int ∗startmax , int ∗endmax , double ∗maxval)
{
int nth ; // number o f threads
#pragma omp p a r a l l e l
{ int pe r s ta r t , // per iod s t a r t

per len , // per iod l ength
perend , // per l en end
pl1 ; // per l en − 1

// best found by t h i s thread so f a r
int mystartmax , myendmax ; // l o c a t i o n s
double mymaxval ; // value
// s c ra t ch v a r i a b l e
double xbar ;
int me; // ID for t h i s thread
#pragma omp s i n g l e
{

nth = omp get num threads () ;
}

118 CHAPTER 5. SHARED-MEMORY: C

me = omp get thread num () ;
mymaxval = −1;
#pragma omp for
for (p e r s t a r t = 0 ; p e r s t a r t <= nx−k ;

p e r s t a r t++) {
for (pe r l en = k ; pe r l en <= nx − p e r s t a r t ;

pe r l en++) {
perend = p e r s t a r t+per len −1;
i f (pe r l en == k)

xbar = mean(x , pe r s ta r t , perend) ;
else {

// update the o ld mean
pl1 = per l en − 1 ;
xbar =

(pl1 ∗ xbar + x [perend]) / per l en ;
}
i f (xbar > mymaxval) {

mymaxval = xbar ;
mystartmax = p e r s t a r t ;
myendmax = perend ;

}
}

}
#pragma omp c r i t i c a l
{

i f (mymaxval > ∗maxval) {
∗maxval = mymaxval ;
∗startmax = mystartmax ;
∗endmax = myendmax ;

}
}

}
}

// here ’ s our t e s t code

i n t main (i n t argc , char ∗∗argv)
{

i n t startmax , endmax ;
double maxval ;
double ∗x ;
i n t k = a t o i (argv [1]) ;
i n t i , nx ;

5.2. EXAMPLE: MAXIMAL BURST IN A TIME SERIES 119

nx = a t o i (argv [2]) ; // l ength o f x
x = mal loc (nx∗ s i z e o f (double)) ;
f o r (i = 0 ; i < nx ; i++)

x [i] = rand () / (double) RAND MAX;
double start ime , endtime ;
s ta r t ime = omp get wtime () ;
// p a r a l l e l
burst (x , nx , k ,&startmax ,&endmax ,&maxval) ;
// back to s i n g l e thread
endtime = omp get wtime () ;
p r i n t f (” e l apsed time : %f \n” , endtime−s ta r t ime) ;
p r i n t f (”%d %d %f \n” , startmax , endmax , maxval) ;
i f (nx < 25) {

f o r (i = 0 ; i < nx ; i++) p r i n t f (”% f ” , x [i]) ;
p r i n t f (”\n ”) ;

}
}

5.2.2 Compiling and Running

One does need to specify to the compiler that one is using OpenMP. On
Linux, for instance, I compiled the code via the command

% gcc −g −o burst Burst . c −fopenmp −lgomp

Here I am directing the compiler gcc to process my C source file Burst.c,
producing as output the executable file burst. I specify -fopenmp to warn
the compiler that I am using the OpenMP pragmas, and ask to link in the
OpenMP runtime library, gomp. For debugging purposes, I include the
flag -g.

Note too that there is a corresponding include-file line in the code, to include
the OpenMP definitions:

#include <omp.h>

Here is a sample run k = 10 and n = 2500:

% burst 3 10
e lapsed time : 0 .000626
2 4 0.831062
0.840188 0.394383 0.783099 0.798440 0.911647 0.197551

0.335223 0.768230 0.277775 0.553970

120 CHAPTER 5. SHARED-MEMORY: C

5.2.3 Analysis

Now, take a look at burst():

void burst (double ∗x , int nx , int k ,
int ∗startmax , int ∗endmax , double ∗maxval)
{
int nth ; // number o f threads
#pragma omp p a r a l l e l
{ int pe r s ta r t , // START OF PARALLEL BLOCK

per len , // per iod l ength
. . .
. . .
. . .

∗startmax = mystartmax ;
∗endmax = myendmax ;

}
}

} // END OF PARALLEL BLOCK

This is really the crux of OpenMP. Note the pragma:

#pragma omp parallel

This instruction to the compiler unleashes a team of threads. Each of the
threads will execute the block that follows,2 with certain rules governing
the local variables:

Consider the variable nth.3 It is local to burst(), but significantly it is
outside the block executed by the threads. This means, in effect, that nth
acts globally from the point of view of the threads, with this variable being
shared by all the threads. If one thread changes the value of this variable,
the other threads see the new value if they read nth.

By contrast, perstart is declared inside the threads block. This means that
each thread will have its own perstart, acting completely independently
of the others; this variable is not shared.

Shared-memory programming, by definition, needs shared variables. In
threads programming, all the global variables are shared, but the above

2A block in C/C++ consists of code contained between left and right braces, { and
}. Here, we’ve highlighted them with START... and END... comments.

3Actually, this variable is not used. However, I usually include it for debugging
purposes.

5.2. EXAMPLE: MAXIMAL BURST IN A TIME SERIES 121

scope rules give the programmer the ability to designate some nonglobals
as shared as well. (OpenMP also has other options for this, which will not
be covered here.)

Let’s look at the next pragma:

#pragma omp single

{

nth = omp_get_num_threads();

}

The single pragma directs that one thread (whichever reaches this line
first) will execute the next block, while the other threads wait. In this case,
we are just setting nth, the number of threads, and since the variable is
shared, only one thread need set it.

As mentioned, the other threads will wait for the one executing that single
block. In other words, there is an implied barrier right after the block. In
fact, OpenMP inserts invisible barriers after all parallel, for and sections
pragma blocks. In some settings, the programmer knows that such a barrier
is unnecessary, and can use the nowait clause to instruct OpenMP to not
insert a barrier after the block:

#pragma omp for nowait

Of course, programmers may need to insert their own barriers at various
places in their code. The OpenMP barrier pragma is available for this.

As usual, we need each thread to know its own ID number:

me = omp_get_thread_num();

Note again that me was declared inside the parallel pragma block, so that
each thread will have a different, independent version of this variable—
which of course is exactly what we need.

Unlike most of our earlier examples, the code here does not break our data
into chunks. Instead, the workload is partitioned in a different way to the
threads. Here is how. Look at the nested loop,

for (perstart = 0; perstart <= nx-k; perstart++) {

for (perlen = k; perlen <= nx - perstart; perlen++) {

122 CHAPTER 5. SHARED-MEMORY: C

The outer loop iterates over all possible starting points for a burst period,
while the inner loop iterates over all possible lengths for the period. One
natural way to divide up the work among the threads is to parallelize the
outer loop. The for pragma does exactly that:

#pragma omp for

for (perstart = 0; perstart <= nx-k; perstart++) {

This pragma says that the following for loop will have its iterations divided
among the threads. Each thread will work on a separate set of iterations,
thus accomplishing the work of the loop in parallel. (Clearly, a requirement
is that the iterations must be independent of each other.) One thread will
work on some values of perstart, a second thread will work on some other
values, and so on.

Note that we won’t know ahead of time which threads will handle which
loop iterations. We’ll have more on this below, but the point is that there
will be some partitioning done by the OpenMP code, thus parallelizing the
computation. Of course, a for pragma is meaningless if it is not inside a
parallel block, as there would be no threads to assign the iterations to.

The way we’ve set things up here, the inner loop,

for (perlen = k; perlen <= nx - perstart; perlen++) {

does not have its work partitioned among threads. For any given value of
perstart, all values of perlen will be handled by the same thread.

So, each thread will keep track of its own record values, i.e., the location
and value of the maximal burst it has found so far. In the end, each thread
will need to update the overall record values, in this code:

if (mymaxval > *maxval) {

*maxval = mymaxval;

*startmax = mystartmax;

*endmax = myendmax;

}

This is a critical section, and the code must be executed atomically. If
we were programming directly with a threads interface library, we would
need to declare a lock variable and initialize the lock at the beginning of
the function burst(), and then have code locking and unlocking the lock
immediately before and after the critical section. By contrast, a program-
mer’s life is much easier with OpenMP: One simply inserts an OpenMP
critical pragma:

5.2. EXAMPLE: MAXIMAL BURST IN A TIME SERIES 123

#pragma omp critical

{

if (mymaxval > *maxval) {

*maxval = mymaxval;

*startmax = mystartmax;

*endmax = myendmax;

}

}

5.2.4 A Cautionary Note About Thread Scheduling

In Section 5.2.3, it was stated, concerning the code

#pragma omp parallel

“This instruction to the compiler unleashes a team of threads.” This sounds
innocuous, but what does it really mean? All it says is that the threads
will be created. They will now appear in the operating system’s process
table in ready state (Section 2.6)—in other words, they are not necessarily
actually running yet.

The order in which the threads do start running is random, unpredictable.
It’s quite important to keep this in mind, as subtle and hard-to-fix bugs
may occur if it is ignored.

5.2.5 Setting the Number of Threads

One can set the number of threads either before or during execution, For
the former, one sets the OMP NUM THREADS environment variable,
e.g.

export OMP_NUM_THREADS=8

to specify 8 threads in the bash shell on Unix-family systems. To do this
programmatically, use omp set num threads().

Technically, these only specify an upper bound on the number of threads
used. The OpenMP runtime system may choose to override the specified
value with a smaller number. You can disable this by

omp_set_dynamic(0)

124 CHAPTER 5. SHARED-MEMORY: C

threads time
2 18.543343
4 11.042197
8 6.170748

16 3.183520

Table 5.1: Timings for the maximal-burst example

5.2.6 Timings

Timings on simulated data, with n = 50000 and k = 100, on the 16-core
machine described in this book’s Preface, are shown in Table 5.1. The
pattern was fairly linear, with each doubling in the number of threads
producing an approximate halving of run time.

5.3 OpenMP Loop Scheduling Options

You may have noticed that we have a potential load balance problem in
the above maximal-burst example. Iterations that have a larger value of
perstart do less work. In fact, the pattern here is very similar to that of
our mutual outlinks example, in which we first mentioned the load balance
issue (Section 1.4.5.2). Thus the manner in which iterations are assigned
to threads may make a big difference in program speed.

So far, we haven’t discussed the details of how the various iterations in a
loop are assigned to the various threads. Back in Section 3.1, we discussed
general strategies for doing this, and OpenMP offers the programmer sev-
eral options along those lines.

5.3.1 OpenMP Scheduling Options

The type of scheduling is specified via the schedule clause in a for pragma,
e.g.

#pragma omp for schedule(static)

5.3. OPENMP LOOP SCHEDULING OPTIONS 125

and

#pragma omp for schedule(dynamic,50)

The keywords static and dynamic correspond to the scheduling strategies
presented in Section 3.1, with the optional second argument being chunk
size as discussed in that section. The static version assigns chunks before
the loop is executed, parceled out in Round Robin manner.

The third scheduling option is guided. It uses a large chunk size in early
iterations, but tapers down the chunk size as the execution of the loop pro-
gresses. This strategy, also discussed in Section 3.1, is designed to minimize
overhead in the early rounds, but minimize load imbalance later on. Details
are implementation-dependent.

Instead of hardcoding the options as above, one can allow the choices to
be made a run time, either via the function omp set schedule() or by
setting the environment variable OMP SCHEDULE.

Continuing the timing experiments from Section 5.2.6, with k = 10 and n
= 75000, produced the results in Table 5.2.

Not much pattern emerges. There did seem to be a penalty for using too
large a chunk size with 4 threads, probably reflecting load imbalance.

And most importantly, the default settings seem to work well. Unfortu-
nately, they are implementation-dependent, but things at least worked well
on this platform (GCC version 4.6.3 on Ubuntu).

As a rule of thumb, fine-tuning schedule settings should make a difference
only in very special applications. For example, if one has a small number of
threads, a small number of iterations and the iteration times are large and
widely-varying (in unpredictable ways), one might try a dynamic schedule
with a chunk size of 1.

5.3.2 Scheduling through Work Stealing

We note some OpenMP-like systems that do internal work stealing, such as
Threading Building Blocks (TBB, Section 5.11) and Cilk++. Their internal
algorithms for partitioning work to threads are aimed at providing better
load balance. The algorithms do runtime checks to see whether one thread
has become idle while another thread has a queue of work to do. In such a
case, work is transferred from the overburdened thread to the idle one—all
without the programmer having to go to any effort.

126 CHAPTER 5. SHARED-MEMORY: C

theads sched, chunk time
4 default 22.773100
4 static, 1 22.932213
4 static, 50 22.887986
4 static, 500 25.730284
4 dynamic, 1 22.841720
4 dynamic, 50 22.774348
4 dynamic, 500 23.669525
4 guided 22.767232

16 default 7.081358
16 static, 1 7.046007
16 static, 50 7.059683
16 static, 500 7.010607
16 dynamic, 1 7.060027
16 dynamic, 50 7.020815
16 dynamic, 500 7.010607
16 guided 7.194322

Table 5.2: Timings, for various scheduling options

5.4. EXAMPLE: TRANSFORMING AN ADJACENCY MATRIX 127

Again, for most looping applications this won’t be necessary. But for com-
plicated algorithms with dynamic work queues, work stealing may produce
a performance boost.

5.4 Example: Transforming an Adjacency Ma-
trix

Let’s see how the example in Section 4.8 can be implemented in OpenMP.

(It is recommended that the reader review the R version of this algorithm
before continuing. The pattern used below is similar, but a bit harder to
follow in C, which is a lower-level language than R.)

5.4.1 The Code

// AdjMatXform . c

// takes a graph adjacency matrix for a d i r e c t e d
// graph , and conver t s i t to a 2−column matrix o f
// p a i r s (i , j) , meaning an edge from vertex i to
// ver tex j ; the output matrix must be in
// l e x i c o g r a p h i c a l order

#include <omp . h>
#include <s t d l i b . h>
#include <s t d i o . h>

// transgraph () does the work
// arguments :

// adjm : the adjacency matrix (NOT assumed
// symmetric) , 1 for edge , 0 otherwi s e ;
// matrix i s ove rwr i t t en by the func t i on
// n : number o f rows and columns o f adjm
// nout : output , number o f rows in returned matrix
// returned value : po in t e r to the converted matrix

// f i n d s chunk among 0 , . . . , n−1 to a s s i g n to thread
// number me among nth threads
void f indmyrange (int n , int nth , int me, int ∗myrange)

128 CHAPTER 5. SHARED-MEMORY: C

{ int chunks ize = n / nth ;
myrange [0] = me ∗ chunks ize ;
i f (me < nth−1)

myrange [1] = (me+1) ∗ chunks ize − 1 ;
else myrange [1] = n − 1 ;

}

int ∗ transgraph (int ∗adjm , int n , int ∗nout)
{

int ∗outm , // to become the output matrix
∗num1s , // i−th element w i l l be number o f 1 s

// in row i o f adjm
∗cumul1s ; // cumulat ive sums in num1s

#pragma omp p a r a l l e l
{ int i , j ,m;

int me = omp get thread num() ,
nth = omp get num threads () ;

int myrows [2] ;
int t o t 1 s ;
int outrow , num1si ;
#pragma omp s i n g l e
{

num1s = mal loc (n∗s izeof (int)) ;
cumul1s = mal loc ((n+1)∗s izeof (int)) ;

}
// determine the rows in adjm to be handled
// by t h i s thread
findmyrange (n , nth , me , myrows) ;
// now go through each row o f adjm as s i gned
// to t h i s thread , r e co rd ing the l o c a t i o n s
// (column numbers) o f the 1 s ; to save on
// malloc () ops , r euse adjm , wr i t i ng l o c a t i o n s
// found in row i back in to that row
for (i = myrows [0] ; i <= myrows [1] ; i++) {

// number o f 1 s found in t h i s row
to t1 s = 0 ;
for (j = 0 ; j < n ; j++)

i f (adjm [n∗ i+j] == 1) {
adjm [n∗ i +(to t1 s ++)] = j ;

}
num1s [i] = to t1 s ;

}
// one thread w i l l use num1s , s e t by a l l

5.4. EXAMPLE: TRANSFORMING AN ADJACENCY MATRIX 129

// threads so make sure they ’ re a l l done
#pragma omp b a r r i e r
#pragma omp s i n g l e
{

// cumul1s [i] t o t 1 s be f o r e row i o f adjm
cumul1s [0] = 0 ;
// now c a l c u l a t e where the output o f
// each row in adjm should s t a r t in outm
f o r (m = 1 ; m <= n ; m++) {

cumul1s [m] = cumul1s [m−1] + num1s [m−1] ;
}
∗nout = cumul1s [n] ;
outm = malloc (2∗ (∗nout) ∗ s i z e o f (i n t)) ;

}
// impl i ed b a r r i e r a f t e r ” s i n g l e ” pragma
// now f i l l in t h i s thread ’ s por t i on o f the
// output matrix
for (i = myrows [0] ; i <= myrows [1] ; i++) {

// cur rent row with in outm
outrow = cumul1s [i] ;
num1si = num1s [i] ;
for (j = 0 ; j < num1si ; j++) {

outm [2∗ (outrow+j)] = i ;
outm [2∗ (outrow+j)+1] = adjm [n∗ i+j] ;

}
}

}
// impl i ed b a r r i e r a f t e r ” p a r a l l e l ” pragma
return outm ;

}

5.4.2 Analysis of the Code

Before we begin, note that parallel C/C++ code involving matrices typi-
cally is written in one dimension, as follows:

Consider a 3x8 array x. Since row-major order (recall Section 2.3) is used in
C/C++, the array is stored internally in 24 consecutive words of memory,
in row-by-row order. Keep in mind that C/C++ indices start at 0, not 1 as
in R. The element in the second row and fifth column of the array is then
x[1,4], and it would be in the 8 + 4 = 12th word in internal storage. In
general, x[i,j] is stored in word

130 CHAPTER 5. SHARED-MEMORY: C

8 * i + j

of the array.

In writing generally-applicable code, we typically don’t know at compile
time how many columns (8 in the little example above) our matrix has. So
it is typical to recognize the linear nature of the internal storage, and use
it in our C code explicitly, e.g.

i f (adjm [n∗ i+j] == 1) {
adjm [n∗ i +(to t1 s ++)] = j ;

The memory allocation issue has popped up again, as it did in the Rdsm
implementation. Recall that in the latter, we allocated memory for an
output of size equal to that of the worst possible case. In this case, we
have chosen to allocate memory during the midst of execution, rather than
allocating beforehand, with an array num1s that will serve the following
purpose.

Note that if some row in the input matrix contains, say, five 1s, then this
row will contribute five rows in the output. We calculate such information
for each input row, placing this information in the array num1s:

for (i = myrows[0]; i <= myrows[1]; i++) {

tot1s = 0; // number of 1s found in this row

for (j = 0; j < n; j++)

if (adjm[n*i+j] == 1) {

adjm[n*i+(tot1s++)] = j;

}

num1s[i] = tot1s;

}

Once that array is known, we find its cumulative values. These will inform
each thread as to where that thread will write to the output matrix, and
also will give us the knowledge of how large the output matrix will be. The
latter information is used in the call to the C library memory allocation
function malloc():

#pragma omp barrier

#pragma omp single

{

cumul1s[0] = 0; // cumul1s[i] will be tot 1s before row i of adjm

// now calculate where the output of each row in adjm

// should start in outm

for (m = 1; m <= n; m++) {

cumul1s[m] = cumul1s[m-1] + num1s[m-1];

5.4. EXAMPLE: TRANSFORMING AN ADJACENCY MATRIX 131

}

*nout = cumul1s[n];

outm = malloc(2*(*nout) * sizeof(int));

}

Note again that memory allocation can be expensive, so in this particular
implementation, we have decided to save allocation time (and space) by
reusing adjm for scratch space. Thus the input matrix is written over,
and would have to be saved before the call if it were still needed. Those
intermediate results stored in the reused parts of adjm, which were the
column numbers of the 1s that were found, are then used to fill out the
output matrix:

// now fill in this thread’s portion of the output matrix

for (i = myrows[0]; i <= myrows[1]; i++) {

outrow = cumul1s[i]; // current row within outm

num1si = num1s[i];

for (j = 0; j < num1si; j++) {

outm[2*(outrow+j)] = i;

outm[2*(outrow+j)+1] = adjm[n*i+j];

}

}

Note that implied and explicit barriers are used in this program. For in-
stance, consider the second single pragma:

...

}

num1s[i] = tot1s;

}

#pragma omp barrier

#pragma omp single

{

cumul1s[0] = 0; // cumul1s[i] will be tot 1s before row i of adjm

// now calculate where the output of each row in adjm

// should start in outm

for (m = 1; m <= n; m++) {

cumul1s[m] = cumul1s[m-1] + num1s[m-1];

}

*nout = cumul1s[n];

outm = malloc(2*(*nout) * sizeof(int));

}

for (i = myrows[0]; i <= myrows[1]; i++) {

outrow = cumul1s[i];

...

The num1s array is used within the single pragma, but computed just
before it. We thus needed to insert a barrier before the pragma, to make
sure nums1 is ready.

132 CHAPTER 5. SHARED-MEMORY: C

Similarly, the single pragma computes cumul1s, which is used by all
threads after the pragma. Thus a barrier is needed right after the pragma,
but OpenMP inserts an implicit barrier there for us, so we don’t have an
explicit one.

Note the OpenMP construct used in the program in Section 5.2.1 that is
now missing in our current example—the omp for pragma. Here we specif-
ically assign certain threads to certain (contiguous) rows of our adjacency
matrix, something the omp for pragma would not give us.

5.5 Example: Adjacency Matrix, R-Callable
Code

A typical application might involve an analyst writing most of his code in
R, for convenience, but write the parallel part of the code in C/C++, to
maximize speed. The most common interfaces for this are the R functions
.C(), .Call() and Rcpp. We’ll illustrate that notion here, modifying our
earlier code for transforming an adjacency matrix, in Section 5.4.1.

5.5.1 The Code, for .C()

Code suitable for the .C() interface follows below.

// AdjMatXformForR . c

#include <R. h>
#include <omp . h>
#include <s t d l i b . h>

// transgraph () does t h i s work
// arguments :
// adjm : the adjacency matrix (NOT assumed
// symmetric) , 1 for edge , 0 otherwi s e ;
// note : matrix i s ove rwr i t t en
// np : po in t e r to number o f rows and
// columns o f adjm
// nout : output , number o f rows in
// returned matrix
// outm : the converted matrix

5.5. EXAMPLE: ADJACENCY MATRIX, R-CALLABLE CODE 133

void f indmyrange (int n , int nth , int me, int ∗myrange)
{ int chunks ize = n / nth ;

myrange [0] = me ∗ chunks ize ;
i f (me < nth−1)

myrange [1] = (me+1) ∗ chunks ize − 1 ;
else myrange [1] = n − 1 ;

}

void transgraph (int ∗adjm , int ∗np , int ∗nout ,
int ∗outm)

{
int ∗num1s , // i−th element w i l l be the number

// o f 1 s in row i o f adjm
∗cumul1s , // cumulat ive sums in num1s
n = ∗np ;

#pragma omp p a r a l l e l
{ int i , j ,m;

int me = omp get thread num() ,
nth = omp get num threads () ;

int myrows [2] ;
int t o t 1 s ;
int outrow , num1si ;
#pragma omp s i n g l e
{

num1s = mal loc (n∗s izeof (int)) ;
cumul1s = mal loc ((n+1)∗s izeof (int)) ;

}
f indmyrange (n , nth , me , myrows) ;
for (i = myrows [0] ; i <= myrows [1] ; i++) {

t o t 1 s = 0 ; // number o f 1 s found in t h i s row
for (j = 0 ; j < n ; j++)

i f (adjm [n∗ j+i] == 1) {
adjm [n∗ (t o t 1 s++)+i] = j ;

}
num1s [i] = to t1 s ;

}
#pragma omp b a r r i e r
#pragma omp s i n g l e
{

// cumul1s [i] w i l l be to t 1 s be f o r e
// row i o f adjm
cumul1s [0] = 0 ;
// now c a l c u l a t e where the output o f each

134 CHAPTER 5. SHARED-MEMORY: C

// row in adjm should s t a r t in outm
for (m = 1 ; m <= n ; m++) {

cumul1s [m] = cumul1s [m−1] + num1s [m−1] ;
}
∗nout = cumul1s [n] ;

}
int n2 = n ∗ n ;
for (i = myrows [0] ; i <= myrows [1] ; i++) {

// cur rent row with in outm
outrow = cumul1s [i] ;
num1si = num1s [i] ;
for (j = 0 ; j < num1si ; j++) {

outm [outrow+j] = i + 1 ;
outm [outrow+j+n2] = adjm [n∗ j+i] + 1 ;

}
}

}
}

We could have a main() function here, but instead will be calling the code
from R, as will be seen shortly.

5.5.2 Compiling and Running

In writing a C file y.c containing a function f() that we’ll call from R, one
can compile using R from a shell command line:

R CMD SHLIB y.c

This produces a runtime-loadable library file. In Linux or Mac systems, for
instance, the file y.so would be created (possibly, with the corresponding
file for Windows being y.dll. We then load it from R:

> dyn . load (”y . so ”)

after which can call f() from R in some manner, such as .C() or .Call().
We’ve written the code above to be compatible with the simpler interface,
.C(), which takes the form

> .C(” f ” , our arguments here)

A more complex but more powerful call form, .Call() is also available, to
be discussed below.

5.5. EXAMPLE: ADJACENCY MATRIX, R-CALLABLE CODE 135

The file y.c must include the R header file:

#include <R.h>

Generally the good thing about compiling via R CMD SHLIB is that we
don’t have to worry where the header file is, or worry about the library
files. But things are a bit more complicated if one’s code uses OpenMP, in
which case we must so inform the compiler. We can do this by setting the
proper environment variable. For C code and the bash shell, for instance,
we would issue the shell command

% export SHLIB OPENMP CFLAGS = −fopenmp

Here is a sample run, again in the R interactive shell, with the C file being
AdjMatXformForR.c:

n <− 5
dyn . load (”AdjMatXformForR . so ”)
a <− matrix (sample (0 : 1 , nˆ2 , replace=T) , ncol=n)
out <−.C(” transgraph ” , as . integer (a) , as . integer (n) ,

integer (1) , integer (2∗n ˆ2))

Compare this last line to the signature of transgraph():

void transgraph(int *adjm, int *np, int *nout, int *outm)

Note the following:

• The return value must be of type void, and in fact return values are
passed via the arguments, in this case nout (the number of rows in
the output matrix) and outm (the output matrix itself).

• All arguments are pointers.

• Our R code must allocate space for the output arguments.

Concerning that last point, there is no longer reason to have our C code
allocate memory for the output matrix, as it did in Section 5.4. Here we
set up that matrix to have worst-case size before the call, as we did in the
Rdsm version.

So, here is a test run:

136 CHAPTER 5. SHARED-MEMORY: C

> n <- 5

> dyn.load("AdjMatXformForR.so")

> a <- matrix(sample(0:1,n^2,replace=T),ncol=n)

> out <-.C("transgraph",as.integer(a),as.integer(n),

+ integer(1),integer(2*n^2))

> out

[[1]]

[1] 0 0 0 1 0 1 3 0 4 1 3 4 0 0 3 4 1 0 0 4 1 1 0 1 1

[[2]]

[1] 5

[[3]]

[1] 14

[[4]]

[1] 1 1 1 1 2 2 2 3 4 4 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 1

2 4 5 1 4 5 1 2 5 1 2 4

[39] 5 0 0 0 0 0 0 0 0 0 0 0

As you can see, the return value of .C() is an R list, with one element for
each of the arguments to transgraph(), including the output arguments.

Note that by default, all input arguments are duplicated, so that any
changes to them are visible only in the output list, not the original ar-
guments. Here out[[1]] is different from the input matrix a:

> a
[, 1] [, 2] [, 3] [, 4] [, 5]

[1 ,] 1 1 0 1 1
[2 ,] 1 0 0 1 1
[3 ,] 1 0 0 0 0
[4 ,] 0 1 0 0 1
[5 ,] 1 1 0 1 1

Duplication of the data might impose some slowdown, and can be disabled,
but this usage is discouraged by the R development team.

Our output matrix, out[[4]], is hard to read in its linear form. Let’s display
it as a matrix, keeping in mind that our other output variable, out[[3]],
tells us how many (real) rows there are in our output matrix:

> (nout <− out [[3]])
[1] 14

5.5. EXAMPLE: ADJACENCY MATRIX, R-CALLABLE CODE 137

> o4 <− out [[4]]
> om <− matrix (o4 , ncol=2)
> om [1 : nout ,]

[, 1] [, 2]
[1 ,] 1 1
[2 ,] 1 2
[3 ,] 1 4
[4 ,] 1 5
[5 ,] 2 1
[6 ,] 2 4
[7 ,] 2 5
[8 ,] 3 1
[9 ,] 4 2

[1 0 ,] 4 5
[1 1 ,] 5 1
[1 2 ,] 5 2
[1 3 ,] 5 4
[1 4 ,] 5 5

5.5.3 Analysis

So, what has changed in this version? Most of the change is due to the
differences between R and C.

Most importantly, the fact that R uses column-major storage for matrices
while C uses row-major order (Section 2.3) means that much of our new
code must “reverse” the old code. For example, the line

outm[2*(outrow+j)+1] = adjm[n*i+j];

in the original code now becomes

int n2 = n * n;

...

outm[outrow+j+n2] = adjm[n*j+i] + 1;

5.5.4 The Code, for Rcpp

The other major way to call C/C++ code from R is via the .Call() function.
It is considered more advanced than .C(), but is much more complex. That

138 CHAPTER 5. SHARED-MEMORY: C

complexity, though, can be largely hidden from the programmer through
the use of the Rcpp package, and in fact the net result is that the Rcpp
route is actually easier than using .C().

Here is the Rcpp version of our previous code:

// AdjRcpp . cpp

#include <Rcpp . h>
#include <omp . h>

// the func t i on transgraph () does the work
// arguments :
// adjm : the adjacency matrix (NOT assumed
// symmetric) , 1 for edge , 0 otherwi s e ;
// note : matrix i s ove rwr i t t en
// by the func t i on
// return value : the converted matrix

// f i n d s the chunk o f rows t h i s thread w i l l p roce s s
void f indmyrange (int n , int nth , int me, int ∗myrange)
{ int chunks ize = n / nth ;

myrange [0] = me ∗ chunks ize ;
i f (me < nth−1)

myrange [1] = (me+1) ∗ chunks ize − 1 ;
else myrange [1] = n − 1 ;

}

RcppExport SEXP transgraph (SEXP adjm)
{

int ∗num1s , // i−th element w i l l be the number
// o f 1 s in row i o f adjm

∗cumul1s , // cumulat ive sums in num1s
n ;

Rcpp : : NumericMatrix xadjm (adjm) ;
n = xadjm . nrow () ;
int n2 = n∗n ;
Rcpp : : NumericMatrix outm(n2 , 2) ;

#pragma omp p a r a l l e l
{ int i , j ,m;

int me = omp get thread num() ,
nth = omp get num threads () ;

int myrows [2] ;

5.5. EXAMPLE: ADJACENCY MATRIX, R-CALLABLE CODE 139

int t o t 1 s ;
int outrow , num1si ;
#pragma omp s i n g l e
{

num1s = (int ∗) mal loc (n∗s izeof (int)) ;
cumul1s = (int ∗) mal loc ((n+1)∗s izeof (int)) ;

}
f indmyrange (n , nth , me , myrows) ;
for (i = myrows [0] ; i <= myrows [1] ; i++) {

// number o f 1 s found in t h i s row
to t1 s = 0 ;
for (j = 0 ; j < n ; j++)

i f (xadjm (i , j) == 1) {
xadjm (i , (t o t 1 s ++)) = j ;

}
num1s [i] = to t1 s ;

}
#pragma omp b a r r i e r
#pragma omp s i n g l e
{

// cumul1s [i] w i l l be to t 1 s be f o r e row
// i o f xadjm
cumul1s [0] = 0 ;
// now c a l c u l a t e where the output o f each
// row in adjm should s t a r t in outm
for (m = 1 ; m <= n ; m++) {

cumul1s [m] = cumul1s [m−1] + num1s [m−1] ;
}

}
for (i = myrows [0] ; i <= myrows [1] ; i++) {

// cur rent row with in outm
outrow = cumul1s [i] ;
num1si = num1s [i] ;
for (j = 0 ; j < num1si ; j++) {

outm(outrow+j , 0) = i + 1 ;
outm(outrow+j , 1) = xadjm (i , j) + 1 ;

}
}

}

Rcpp : : NumericMatrix outmshort =
outm(Rcpp : : Range (0 , cumul1s [n]−1) ,

Rcpp : : Range (0 , 1)) ;

140 CHAPTER 5. SHARED-MEMORY: C

return outmshort ;
}

5.5.5 Compiling and Running

We will still run R CMD SHLIB to compile, but we have more libraries
to specify in this case. In the bash shell, we can run

export R_LIBS_USER=/home/nm/R

export PKG_LIBS="-lgomp"

export PKG_CXXFLAGS="-fopenmp -I/home/nm/R/Rcpp/include"

That first command lets R know where our R packages are, in this case the
Rcpp package. The second states we need to link in the gomp library,
which is for OpenMP, and the third both warns the compiler to watch for
OpenMP pragmas and to include the Rcpp header files.

Note that that last export assumes our source code is in C++, as indicated
below by a .cpp suffix to the file name. Since C is a subset of C++, our
code can be pure C but we are presenting it as C++.

We then run

R CMD SHLIB AdjRcpp.cpp

This produces a .so file or equivalent as before. Here is a sample run:

> l ibrary (Rcpp) # don ’ t f o r g e t to do t h i s FIRST
> dyn . load (”AdjRcpp . so ”)
> m <− matrix (sample (0 : 1 , 1 6 , replace=T) , ncol=4)
> m

[, 1] [, 2] [, 3] [, 4]
[1 ,] 1 1 1 0
[2 ,] 1 1 0 1
[3 ,] 1 1 0 0
[4 ,] 1 0 0 1
> . Call (” transgraph ” ,m)

[, 1] [, 2]
[1 ,] 1 1
[2 ,] 1 2

5.5. EXAMPLE: ADJACENCY MATRIX, R-CALLABLE CODE 141

[3 ,] 1 3
[4 ,] 2 1
[5 ,] 2 2
[6 ,] 2 4
[7 ,] 3 1
[8 ,] 3 2
[9 ,] 4 1

[1 0 ,] 4 4

Sure enough, we do use .Call() instead of .C(). And note that we have
only one argument here, m, rather than five as before, and that the result is
actually in the return value, rather than being in one of the arguments. In
other words, even though .Call() is more complex than .C(), use of Rcpp
makes everything much simpler than under .C(). In addition, Rcpp allows
us to write our C/C++ code as if column-major order were used, consistent
with R. No wonder Rcpp has become so popular!

5.5.6 Code Analysis

The heart of using .Call(), including via Rcpp, is the concept of the SEXP
(“S-expression,” alluding to R’s roots in the s language). In R internals,
a SEXP is a pointer to a C struct containing the given R object and in-
formation about the object. For instance, the internal storage for an R
matrix will consist of a struct that holds the elements of the matrix and
and its numbers of rows and columns. It is this encapsulation of data and
metadata into a struct that enabled us to have only a single argument in
the new version of transgraph():

RcppExport SEXP transgraph (SEXP adjm)

The term RcppExport will be explained shortly. But first, note that both
the input argument, adjm, and the return value are of type SEXP. In other
words, the input is an R object and the output is an R object. In our run
example above,

> . Call (” transgraph ” ,m)

the input was the R matrix m, and the output was another R matrix.

The machinery in .Call() here is set up for C, and C++ users (including
us in the above example) need a line like

extern ”C” transgraph ;

142 CHAPTER 5. SHARED-MEMORY: C

in the C++ code. The RcppExport term is a convenience for the pro-
grammer, and is actually

#define RcppExport extern ”C”

Now, let’s see what other changes have been made. Consider these lines:

Rcpp : : NumericMatrix xadjm (adjm) ;
n = xadjm . nrow () ;
int n2 = n∗n ;
Rcpp : : NumericMatrix outm(n2 , 2) ;

Rcpp has its own vector and matrix types, serving as a bridge between
those types in R and corresponding arrays in C/C++. The first line above
creates an Rcpp matrix xadjm from our original R matrix adjm. (Ac-
tually, no new memory space is allocated; here xadjm is simply a pointer
to the data portion of the struct where adjm is stored.) The encapsula-
tion mentioned earlier is reflected in the fact that Rcpp matrices have the
built-in method nrow(), which we use here. Then we create a new n2 × 2
Rcpp matrix, outm, which will serve as our output matrix. As before, we
are allowing for the worst case, in which the input matrix consists of all 1s.

Rcpp really shines for matrix code. Recall the discussion at the beginning
of Section 5.4.2. In our earlier versions of this adjacency matrix code, both
in the standalone C and R-callable versions, we were forced to use one-
dimensional subscripting in spite of working with two-dimensional arrays,
e.g.

i f (adjm [n∗ i+j] == 1) {

This was due to the fact that ordinary two-dimensional arrays in C/C++
must have their numbers of columns declared at compile time, whereas
in this application such information is unknown until run time. This is
not a problem with object-oriented structures, such as those in the C++
Standard Template Library (STL) and Rcpp.

So now with Rcpp we can use genuine two-dimensional indexing, albeit
with parentheses instead of brackets:4

i f (xadjm (i , j) == 1) {

Note, though, that Rcpp subscripts follow C/C++ style, starting at 0
rather than 1 for R. The “+1” in

4It is still possible to do one-dimensional indexing, using brackets, but recall that
Rcpp uses column-major order for compatibility with R.

5.6. SPEEDUP IN C 143

outm(outrow+j , 1) = xadjm (i , j) + 1 ;

in which we were inserting a certain column number from the adjacency
matrix, was needed to resolve this discrepancy.

Most of the remaining code is unchanged, except for the return value:

Rcpp : : NumericMatrix outmshort =
outm(Rcpp : : Range (0 , cumul1s [n]−1) ,Rcpp : : Range (0 , 1)) ;

return outmshort ;

As before, we allocated space for outm to allow for the worst case, in which
n2 rows were needed. Typically, there are far fewer than n2 1s in the matrix
adjm, so the last rows in outm are filled with 0s. Here we copy the nonzero
rows into a new Rcpp matrix outmshort, and then return that.

All in all, Rcpp made our code simpler and easier to write: We have
fewer arguments, arguments are in explicit R object form, we don’t need to
deal with row-major vs. column-major order, and our results come back in
exactly the desired R object, rather than as one component of a returned
R list.

5.5.7 Advanced Rcpp

Rcpp is at this writing becoming increasingly more versatile, offering sev-
eral ways to set up code, other than the very basic approach presented
here.

One advanced feature (many would consider it basic, not advanced) is Rcpp
attributes, which enables simpler code, though with an extra build step.
For instance, the argument adjm in transgraph() could be declared as of
type Rcpp::NumericMatrix rather than SEXP. This would be clearer,
and would save us the trouble of creating an extra variable, xadjm.

Another example is Rcpp syntactic sugar, which magically allows you to
add some R-style syntax to C++, very nice!

5.6 Speedup in C

So, let’s check whether running in C can indeed do much better than R in
a parallel context, as discussed back in Section 1.1.

> n <− 10000

144 CHAPTER 5. SHARED-MEMORY: C

cores language time
1 R 27.516
4 R (Rdsm) 7.783
4 C (OpenMP) 3.193

Table 5.3: Timing comparisons

> a <− matrix (sample (0 : 1 , nˆ2 , replace=T) , ncol=n)
> system . time (out <−.C(” transgraph ” , as . integer (a) ,
+ as . integer (n) , integer (1) , integer (2∗n ˆ 2)))

user system e lapsed
5 .692 0 .852 3 .193

Gathering our old timings, the various methods are compared in Table 5.3.

5.7 Run Time vs. Development Time

Inspecting Table 5.3, we see that going from serial R to parallel R cut down
run time by about 72%, while the corresponding figure for OpenMP was
88%. To be sure, the OpenMP version was actually more than twice as
fast as the parallel R one. But relative to the serial R code, the move to C
yielded only a modest improvement over parallel R.

We thus see here a concrete illustration of the Principle of Pretty Good
Parallelism introduced in Section 1.1: Running in C can indeed pay off, if
we are willing to devote the development time, but that payoff may not be
worth the effort.

5.8 Further Cache/Virtual Memory Issues

It has been mentioned several times in this book that cache coherency
transactions (and virtual memory paging) can really compromise perfor-
mance. Coupling that with the point, made in Section 2.3.4, that different
designs of the same code can have quite different memory access patterns
and thus quite different cache performance, we see that we must be mind-

5.8. FURTHER CACHE/VIRTUAL MEMORY ISSUES 145

ful of such issues when we write shared-memory code. And remember, the
problem is especially acute in multicore settings, due to cache coherency
issues (Section 2.5.1.1).

To make this idea concrete, we’ll look at two OpenMP programs to do
in-place matrix transpose. Here’s the first:

// CacheRow . c

#include <omp . h>
#include <s t d l i b . h>
#include <s t d i o . h>

// t r a n s l a t e from 2−D to 1−D i n d i c e s
int onedim (int n , int i , int j) { return n ∗ i + j ; }

void transp (int ∗m, int n)
{

#pragma omp p a r a l l e l
{ int i , j , tmp ;

// walk through a l l the above−d iagona l elements ,
// swapping them with t h e i r below−d iagona l mates
#pragma omp for
for (i = 0 ; i < n ; i++) {

for (j = i +1; j < n ; j++) {
tmp = m[onedim (n , i , j)] ;
m[onedim (n , i , j)] = m[onedim (n , j , i)] ;
m[onedim (n , j , i)] = tmp ;

}
}

}
}

int ∗m;

int main (int argc , char ∗∗argv)
{ int i , j ;

int n = a t o i (argv [1]) ;
m = mal loc (n∗n∗s izeof (int)) ;
for (i = 0 ; i < n ; i++)

for (j = 0 ; j < n ; j++)
m[n∗ i+j] = rand () % 24 ;

i f (n <= 10) {
for (i = 0 ; i < n ; i++) {

146 CHAPTER 5. SHARED-MEMORY: C

for (j = 0 ; j < n ; j++) p r i n t f (”%d ” ,m[n∗ i+j]) ;
p r i n t f (”\n”) ;

}
}
double s tart ime , endtime ;
s ta r t ime = omp get wtime () ;
t ransp (m, n) ;
endtime = omp get wtime () ;
p r i n t f (” e l apsed time : %f \n” , endtime−s ta r t ime) ;
i f (n <= 10) {

for (i = 0 ; i < n ; i++) {
for (j = 0 ; j < n ; j++)

p r i n t f (”%d ” ,m[n∗ i+j]) ;
p r i n t f (”\n”) ;

}
}

}

The code is fairly straightforward. It goes through the matrix row-by-row,
exchanging the above-diagonal elements of each row with their correspond-
ing below-diagonal elements.

Recall once again that C stores matrices in row-major order. So, as the
above code traverses the matrix, it is staying in the same cache block for
a sustained amount of time, i.e., the cache performance is fairly good. We
say only “fairly” here, as the below-diagonal elements are being traversed
column-by-column, thus not auguring well for cache performance. Never-
theless, it would seem that this code will do better than the second version:

// CacheWave . c

#include <omp . h>
#include <s t d l i b . h>
#include <s t d i o . h>

// t r a n s l a t e from 2−D to 1−D i n d i c e s
int onedim (int n , int i , int j) { return n ∗ i + j ; }

void t rade (int ∗m, int n , int i , int j) {
int tmp ;
tmp = m[onedim (n , i , j)] ;
m[onedim (n , i , j)] = m[onedim (n , j , i)] ;
m[onedim (n , j , i)] = tmp ;

}

5.8. FURTHER CACHE/VIRTUAL MEMORY ISSUES 147

void transp (int ∗m, int n)
{ int n1 = n − 1 ;

int n2 = 2 ∗ n − 3 ;
#pragma omp p a r a l l e l
{ int w, j ;

int row , c o l ;
#pragma omp for
// w i s wavefront number , indexed a c r o s s
// top row , bottom row
// we move from nor theas t to southwest
// with in d iagona l s
for (w = 1 ; w <= n2 ; w++) {

i f (w < n) {
row = 0 ;
c o l = w;

} else {
row = w − n1 ;
c o l = n1 ;

}
for (j = 0 ; ; j++) {

i f (row > n1 | | c o l < 0) break ;
i f (row >= c o l) break ;
t rade (m, n , row++,co l −−);

}
}

}
}

int ∗m;

int main (int argc , char ∗∗argv)
{ int i , j ;

int n = a t o i (argv [1]) ;
m = mal loc (n∗n∗s izeof (int)) ;
for (i = 0 ; i < n ; i++)

for (j = 0 ; j < n ; j++)
m[n∗ i+j] = rand () % 24 ;

i f (n <= 10) {
for (i = 0 ; i < n ; i++) {

for (j = 0 ; j < n ; j++)
p r i n t f (”%d ” ,m[n∗ i+j]) ;

p r i n t f (”\n”) ;

148 CHAPTER 5. SHARED-MEMORY: C

}
}
double s tart ime , endtime ;
s ta r t ime = omp get wtime () ;
t ransp (m, n) ;
endtime = omp get wtime () ;
p r i n t f (” e l apsed time : %f \n” , endtime−s ta r t ime) ;
i f (n <= 10) {

for (i = 0 ; i < n ; i++) {
for (j = 0 ; j < n ; j++)

p r i n t f (”%d ” ,m[n∗ i+j]) ;
p r i n t f (”\n”) ;

}
}

}

This version uses a wavefront approach. Here, instead of each iteration
of the for loop processing a different row, each iteration now involves a
different “northeast to southwest” anti-diagonal. For instance, consider the
iteration w = 3 in the outer for loop in transp(). It will process m[0,3],
m[1,2], m[2,1] and m[3,0].

Wavefront methods are widely used in matrix algorithms and can be very
advantageous. Yet in this particular application, the memory usage pat-
tern is more random from a caching point of view, and one suspects that
the resulting poorer hit rate will adversely impact performance. In plain
English: The second version should be slower.

Moreover, we would guess that, the more cores we use, the worse the speed
discrepancy between the two versions of the program. Any cache miss on
a write may cause cache operations at any of the other caches, and since
we have a cache for each core, our troubles should intensify as system size
grows.

This is confirmed in the timing experiments shown in Table 5.4. The matrix
sizes were 25000x25000. We see right away that it does pay to be mindful of
cache implications when one writes one’s code. And sure enough, the more
cores we use, the worse the ratio in run times between the two versions of
code.

Programmers who spend time truly optimizing their code may go further,
for instance worrying about false sharing. Suppose our code writes to a vari-
able x, thus invalidating that particular cache block—which, recall, means
the entire block. There may be a perfectly good copy of another variable y

5.9. REDUCTION OPERATIONS IN OPENMP 149

cores rowwise wavefront ratio
4 9.119054 10.767355 0.8469168
8 4.874676 6.173957 0.7895546

16 2.586739 3.545786 0.7295249

Table 5.4: Timings: same application, different memory patterns

in the same block. Yet now an access to y will trigger an unnecessary and
expensive cache coherency operation, since y is in a “bad” block.

One could avoid such a calamity by placing padding in between our decla-
rations of x and y, say

int x,w[63],y; // all assumed global

If our cache block size is 512 bytes, i.e., 64 8-byte integers, then y should
be 512 bytes past x in memory, hence not in the same block.

5.9 Reduction Operations in OpenMP

A very common operation in parallel computation is reduction, in which
a grand total or some other single number is computed from many. In
addition to a sum, we might compute a minimum, a maximum and so
on. Most programming languages and libraries for parallel computation
include some kind of reduction construct. It has been mentioned earlier in
this book, for instance, that R has a Reduce() function, and that most
message-passing systems have something like that too. OpenMP offers this
too, as we will see in this section.

5.9.1 Example: Mutual In-Links

Here we again revisit our mutual outlinks problem, from Section 1.4. In
this case, we’ll compute inbound links, partly for variety but also to make
a point about caches in Section 5.9.2.

150 CHAPTER 5. SHARED-MEMORY: C

5.9.1.1 The Code

// MutInl inks . cpp

// mutual in−l i n k s preva l ence computation

// input i s a graph adjacency matrix , element (i , j)
// being 1 or 0 , depending on whether the re i s an
// edge from vertex i to ver tex j

// we f i n d the t o t a l number o f mutual in−l i nk s , over
// a l l p o s s i b l e p a i r s o f v e r t i c e s

#include <Rcpp . h>
#include <omp . h>

// count number o f mutual i n l i n k s among v e r t i c e s
// j > i with ver tex i , in the matrix xa o f type
// Rcpp : : NumericMatrix
int do one i (Rcpp : : NumericMatrix xa , int i)
{

int nr = xa . nrow () ;
int nc = xa . nco l () ;
int sum = 0 , j , k ;
i f (i >= nc − 1) return 0 ;
for (j = i +1; j < nc ; j++) {

for (k = 0 ; k < nr ; k++)
sum += xa (k , i) ∗ xa (k , j) ;

}
return sum ;

}

RcppExport SEXP ompmutin (SEXP adj , SEXP nth)
{

Rcpp : : NumericMatrix xadj (adj) ;
int nr = xadj . nrow () ;
int nc = xadj . nco l () ;

// s e t number o f threads
int nthreads = INTEGER(nth) [0] ;
omp s e t num threads (nthreads) ;

// s imp l e s t approach

5.9. REDUCTION OPERATIONS IN OPENMP 151

int tot , i ;
#pragma omp p a r a l l e l for r educt ion (+: to t)
for (i = 0 ; i < nc ; i++)

tot += do one i (xadj , i) ;
return Rcpp : : wrap (to t) ;

}

5.9.1.2 Sample Run

> dyn . load (” MutInl inks . so ”)
> m <− matrix (sample (0 : 1 , 2 5 , replace=T) , ncol=5)
> m

[, 1] [, 2] [, 3] [, 4] [, 5]
[1 ,] 0 1 1 1 0
[2 ,] 1 0 0 1 1
[3 ,] 1 0 0 1 0
[4 ,] 1 1 1 0 0
> l ibrary (Rcpp)
> . Call (”ompmutin” ,m, as . integer (2))
[1] 11

Note the need to write 2 in the call as as.integer(2). This is not an Rcpp
issue; instead, the problem is that R treats the constant 2 as having type
double.

5.9.1.3 Analysis

The OpenMP reduction clause is seen here:

#pragma omp p a r a l l e l f o r r e d u c t i o n (+: t o t)
for (i = 0 ; i < nc ; i++)

tot += do one i (xadj , i) ;

In this pragma, note first that our for clause has in this case been accom-
panied by the parallel and reduction clauses. The former is there simply
to save typing. The code

#pragma omp p a r a l l e l
. . .

#pragma omp f o r

can be written more compactly as

#pragma omp p a r a l l e l f o r

152 CHAPTER 5. SHARED-MEMORY: C

But the reduction clause is new to us here. In this case,

r educt ion (+: to t)

specifies that we will be computing a sum(+), storing it in the variable tot,
and will do so in a “safe” manner, meaning the following. Note carefully
that it may well occur that more than one thread is executing

to t += do one i (xadj , i) ;

at the same time, thus risking a race condition (Section 4.6.1). We need
the above statement to be executed atomically.

We could make use of OpenMP’s critical pragma (Section 5.2.1) to avoid
this, but what’s nice is that OpenMP does all that for us, behind the scenes,
when we specify reduction. OpenMP would set up independent copies of
tot for the various threads, and then add them atomically to the “real” tot
when exiting the loop, but again, we need not worry about this.

5.9.2 Cache Issues

Any time a program is found to be slow, the first suspect is cache behavior.
Often that suspicion is valid.

5.9.3 Rows vs. Columns

Recall that R uses column-major matrix storage, so that elements within
the same column are stored contiguously. This implies that the mutual
inlinks application should have better cache behavior than the mutual out-
links one, since in the former our code (at least in an easy, straightforward
implementation) traverses columns rather than rows.

This also means that if we are interested in outlinks instead, it may pay
to transpose the adjacency matrix before doing our analysis. That itself
requires some time, but if we will be doing a lot of analysis on the matrix,
in algorithms that also would normally traverse rows, this cost may be
worthwhile.

5.9.4 Processor Affinity

Recall from Section 2.6 that when a thread starts a timeslice on a core, the
cache at that core may not contain anything useful to that thread. The

5.10. DEBUGGING 153

cache contents will then have to be built up, causing a lot of cache misses
for a while, thus slowing things down.

It is thus desirable to be able to assign certain threads to certain cores,
known as specifying processor affinity. If you use the gcc compiler, for in-
stance, you can set the environment variable GOMP CPU AFFINITY for
this. Or, from within an OpenMP program you can call sched setaffinity().
Check the documentation for your system for details.

5.10 Debugging

Most debugging tools have the capability to follow specific threads. We’ll
use GDB here.

5.10.1 Threads Commands in GDB

First, as you run a program under GDB, the creation of new threads will
be announced, e.g.

(gdb) r 100 2
Starting program: /debug/primes 100 2
[New Thread 16384 (LWP 28653)]
[New Thread 32769 (LWP 28676)]
[New Thread 16386 (LWP 28677)]
[New Thread 32771 (LWP 28678)]

You can do backtrace (bt) etc. as usual. Here are some threads-related
commands:

• info threads (gives information on all current threads)

• thread 3 (change to thread 3)

• break 88 thread 3 (stop execution when thread 3 reaches source
line 88)

• break 88 thread 3 if x==y (stop execution when thread 3 reaches
source line 88 and the variables x and y are equal)

5.10.2 Using GDB on C/C++ Code Called from R

The basic idea is as follows:

154 CHAPTER 5. SHARED-MEMORY: C

• Start R itself under GDB.

• Place a breakpoint at the C/C++ function you wish to debug.

• Issue the r (“run”) command to GDB, taking you to the R prompt.

• If you are using Rcpp, load that first.

• Call dyn.load() to bring in the C/C++ code.

• Run .Call(), resulting in GDB stopping in the desired C/C++ func-
tion.

• Then use GDB as usual.

Here is an example from the code in Section 5.2.1.

% R -d gdb

GNU gdb (GDB) 7.5.91.20130417-cvs-ubuntu

...

(gdb) b burst

Function "burst" not defined.

Make breakpoint pending on future shared library load? (y or [n]) y

Breakpoint 1 (burst) pending.

(gdb) r

Starting program: /usr/local/lib/R/bin/exec/R

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/i386-linux-gnu/libthread_db.so.1".

R version 3.0.1 (2013-05-16) -- "Good Sport"

...

> dyn.load("Burst.so")

> x <- sample(0:1,100,replace=T)

> .Call("burst",x,as.integer(100),as.integer(10))

Breakpoint 1, burst (x=0x86c6b28, nx=141181456, k=141249936, startmax=0x0,

endmax=0x86177d8, maxval=0x83b8b38) at Burst.c:27

27 {

(gdb) n

42 nth = omp_get_num_threads();

...

5.11 Intel Thread Building Blocks (TBB)

At this writing (spring 2015), the closest competitor to OpenMP as a
higher-level interface to threads is TBB, an open-source library developed
by Intel. Here are some advantages and disadvantages:

5.12. LOCKFREE SYNCHRONIZATION 155

• Due to work stealing (Section 5.3.2), and possibly better cache be-
havior, TBB code in some cases yields better performance.

• TBB does not require special compiler capability, in contrast say to
OpenMP, which requires that the compiler understand OpenMP prag-
mas.

• TBB provides greater flexibility than OpenMP, though at the expense
of considerably greater complexity.

Concerning this last bullet item, TBB requires one to make use of C++
functors, which are function objects taking the form of a struct or class.
We will use these in the Thrust context in Chapter 7, but functors are just
the beginning of the added complexity of TBB.

For instance, take reduction. A function tbb::parallel reduce() is avail-
able in TBB, but it requires not only defining a “normal” functor, but also
defining a second function with the struct or class, named join().

Other than using TBB indirectly via Thrust, this book will not cover TBB.
However, if you are a good C++ programmer, you may find TBB structure
interesting and powerful. The principles of OpenMP covered in this chapter
should provide a good starting point for you.

5.12 Lockfree Synchronization

Bear in mind that locks and barriers are “necessary evils.” We do need
them (or something equivalent) to ensure correct execution of our program,
but they slow things down. For instance, we say that lock variables, or the
critical sections they guard, serialize a program in the section they are used,
i.e., they change its parallel character to serial; only one thread is allowed
into the critical section at a time, so that execution is temporarily serial.
And contention for locks can cause lots of cache coherency transactions,
definitely putting a damper on performance. Thus one should always try
to find clever ways to avoid locks and barriers if possible.

One way to do this is to take advantage of the hardware. Modern processors
typically include a variety of hardware assists to make synchronization more
efficient.

For example, Intel machines allow a machine instruction to be prefixed by
a special byte called a lock prefix. It orders the hardware to lock up the
system bus while the given instruction is executing—so that the execution

156 CHAPTER 5. SHARED-MEMORY: C

is atomic. (The fact that this prefix, a hardware operation, is named lock
should not be confused with lock variables in software.)

Under the critical section approach, code to atomically add 1 to y would
look something like this:

lock the lock
add $1, y
unlock the lock

By contrast, we could do all this with a single machine instruction:

lock add $1, y

OpenMP includes an atomic pragma, which we’d use in the above example
via this code:

#pragma omp atomic
y++;

This instructs the compiler to try to find a hardware construct like the
lock prefix above to implement mutual exclusion, rather than taking the
less efficient critical section route.

Also, the C++ Standard Template Library contains related constructs,
such as the function fetch add(), which again instructs the compiler to
attempt to find an atomic hardware solution to the update-total example
above. This idea has been advanced even further in C++11.

Chapter 6

The Shared-Memory
Paradigm: GPUs

6.1 Overview

The video game market is so lucrative that the industry has developed ever-
faster graphics cards, in order to handle ever-faster and ever-more visually
detailed video games. These actually are parallel processing hardware de-
vices, so around 2003 some people began to wonder if one might use them
for parallel processing of nongraphics applications. Such programming was
called GPGPU, general programming on graphics processing units, later
shortened to simply GPU programming.

Originally this was cumbersome. One needed to figure out clever ways of
mapping one’s application to some kind of graphics problem, i.e., ways of
disguising one’s problem so that it appeared to be doing graphics computa-
tions. Though some high-level interfaces were developed to automate this
transformation, effective coding required some understanding of graphics
principles.

But current-generation GPUs separate out the graphics operations, and
now consist of multiprocessor elements that run under the familiar shared-
memory threads model. Granted, effective coding still requires an intimate
knowledge of the hardware, but at least it’s (more or less) familiar hardware,
not requiring knowledge of graphics.

Moreover, unlike a multicore machine, with the ability to effectively run just

157

158 CHAPTER 6. SHARED-MEMORY: GPUS

a few threads at one time, e.g. four threads on a quad core machine, GPUs
can run hundreds or thousands of threads well at once. There are various
restrictions that come with this, but you can see that there is fantastic
potential for speed here.

We will focus on NVIDIA’s line of GPUs here. (For brevity, the presentation
here will often refer to “GPUs” rather than “NVIDIA GPUs,” but the latter
is implied.) They are programmed in an extension of C/C++ called CUDA,
for which various R interfaces have been developed. So as with OpenMP
in Chapter 5, we again have an instance of the R+X notion introduced in
Section 1.1.

To run the examples here, you’ll need a CUDA-capable video card, and the
CUDA development kit. To check whether your GPU is CUDA-capable,
first determine what type you have (e.g. under Linux run /sbin/lspci
or possibly /usr/bin/lspci), and then check the NVIDIA website or the
CUDA Wikipedia entry.

The CUDA kit can be downloaded from the NVIDIA site. It is free of
charge (though requires about a gigabyte of disk space).

6.2 Another Note on Code Complexity

Recall the discussion in Section 3.3, in which it was pointed out that effi-
cient parallel programming often requires keen attention to detail. This is
especially true for GPUs, which have a complex hardware structure, to be
presented shortly. Thus, optimizing CUDA code is difficult.

Another issue is that NVIDIA is continuing to add more and more pow-
erful features to that hardware. Thus we have a “moving target,” making
optimization even more of a challenge (though backward compatibility has
been maintained).

On the other hand, it was noted at the start of Chapter 4 that in the parallel
processing world, there is always a tradeoff between speed and programming
effort. In many cases, one is happy to have just “good enough” speed,
attained without having to expend herculean efforts in programming.

In light of this latter point, the CUDA code presented here is meant to have
good speed while staying simple. But there is more:

An important approach to addressing the above issues is to make use of
libraries. For many applications, very efficient CUDA libraries have been
developed, such as the CUBLAS library for matrix operations. In addition,

6.3. GOAL OF THIS CHAPTER 159

some R packages that include good CUDA code have also been developed.
A big advantage of these, tying in with the “moving target” metaphor
above, is that as NVIDIA hardware evolves, the libraries will typically be
updated. This obviates the need for you to update your own CUDA code.

6.3 Goal of This Chapter

Thus, this chapter will first present examples directly written in CUDA,
with relatively simple complexity but with reasonably good speed. These
will serve the dual purposes of introducing CUDA

(a) for those who wish to write such code, and

(b) to illustrate how the hardware works, vital even for those who only
use libraries.

6.4 Introduction to NVIDIA GPUs and CUDA

As noted, NVIDIA hardware and CUDA programming are threads- and
shared-memory oriented. So far, so good, but there are wrinkles to this,
so first brace yourself for a barrage of specialized terms: Execution at the
GPU (termed the device) is launched at the CPU (the host), via a call to
a programmer-written kernel. Note that the term shared memory in this
context now refers to memory there on the graphics card, not the memory
accessed by the CPU; this graphics card memory is called global memory.
And to make matters even more confusing, there actually is something
called shared memory, which you’ll see really amounts to a cache. In the
launch, the programmer also configures some special structures, grid and
blocks, which determines how the threads are organized. All this will unfold
in the next few pages.

The CUDA library includes routines to allocate space for data objects on
the device, and to transfer data from the host to the device and vice versa.
Note carefully: Such transfer can be a bottleneck in regard to efficiency
of the code, and thus must be used carefully.

160 CHAPTER 6. SHARED-MEMORY: GPUS

6.4.1 Example: Calculate Row Sums

Let’s start with an easy one. Below is CUDA code that inputs a matrix
and outputs an array consisting of the sums of the rows of the matrix.

// RowSums . cu ; s imple i i l u s t r a t i o n o f CUDA

#include <s t d i o . h>
#include <s t d l i b . h>
#include <cuda . h>

// CUDA example : f i n d s row sums o f an i n t e g e r
// matrix m

// f i n d 1 e l t () f i n d s the row sum of one row o f the
// nxn matrix m, s t o r i n g the r e s u l t in the
// cor re spond ing p o s i t i o n in the rowsum array r s ;
// matrix i s in 1−dimensional , row−major order

// t h i s i s the ” ke rne l ” , which each thread on the
// GPU execute s

g l o b a l void f i n d 1 e l t (int ∗m, int ∗rs , int n)
{

// t h i s thread w i l l handle row # rownum
int rownum = blockIdx . x ;
int sum = 0 ;
for (int k = 0 ; k < n ; k++)

sum += m[rownum∗n+k] ;
r s [rownum] = sum ;

}

// the remaining code i s executed on the CPU
int main (int argc , char ∗∗argv)
{

// number o f matrix rows/ c o l s
int n = a t o i (argv [1]) ;
int ∗hm, // host matrix

∗dm, // dev i c e matrix
∗hrs , // host rowsums
∗drs ; // dev i c e rowsums

// s i z e o f matrix in bytes
int msize = n ∗ n ∗ s izeof (int) ;
// a l l o c a t e space for host matrix

6.4. INTRODUCTION TO NVIDIA GPUS AND CUDA 161

hm = (int ∗) mal loc (msize) ;
// as a te s t , f i l l matrix with consec . i n t e g e r s
int t = 0 , i , j ;
for (i = 0 ; i < n ; i++) {

for (j = 0 ; j < n ; j++) {
hm[i ∗n+j] = t++;

}
}
// a l l o c a t e matrix space at dev i ce
cudaMalloc ((void ∗∗)&dm, msize) ;
// copy host matrix to dev i c e matrix
cudaMemcpy(dm,hm, msize , cudaMemcpyHostToDevice) ;
// a l l o c a t e host , dev i c e rowsum arrays
int r s s i z e = n ∗ s izeof (int) ;
hrs = (int ∗) mal loc (r s s i z e) ;
cudaMalloc ((void ∗∗)&drs , r s s i z e) ;
// s e t up threads s t r u c t u r e parameters
dim3 dimGrid (n , 1) ; // n b locks in the g r id
dim3 dimBlock (1 , 1 , 1) ; // 1 thread per block
// launch the ke rne l
f i n d 1 e l t<<<dimGrid , dimBlock>>>(dm, drs , n) ;
// wait u n t i l k e rne l f i n i s h e s
cudaThreadSynchronize () ;
// copy row vecto r from dev i ce to host
cudaMemcpy(hrs , drs , r s s i z e , cudaMemcpyDeviceToHost) ;
// check r e s u l t s
i f (n < 10)

for (int i =0; i<n ; i++) p r i n t f (”%d\n” , hrs [i]) ;
// c l ean up , very important
f r e e (hm) ;
cudaFree (dm) ;
f r e e (hrs) ;
cudaFree (drs) ;

}

Here is the overview:

• One needs to bring in the CUDA defines:

#i n c l u d e <cuda . h>

• The main() function runs on the CPU, as usual.

162 CHAPTER 6. SHARED-MEMORY: GPUS

• The kernel function, find1elt() in this case, runs on the GPU, and
is so denoted by the prefix global .

• The host code sets up space in the device memory via calls to cud-
aMalloc(), and transfers data from host to device or vice versa by
calling cudaMemcpy(). The data on the device side is global to all
threads.

• The host code launches the kernel via the lines

dim3 dimGrid (n , 1) ; // n b locks in the grid
dim3 dimBlock (1 , 1 , 1) ; // 1 thread per block
f i n d 1 e l t<<<dimGrid , dimBlock>>>(dm, drs , n) ;

• Each thread executes the kernel, working on a different row of the
shared input matrix, and writing its result to a different element of
the shared output array.

Other than the host/device distinction, the above description sounds very
much like ordinary threaded programming. There is a major departure
from the ordinary, though, in the structure of the threads.

Threads on the GPU are broken down into blocks, with the totality of all
blocks being called the grid. In a kernel launch, we must tell the hardware
how many blocks our grid is to have, and how many threads each block will
have. Our code

dim3 dimGrid (n , 1) ; // n b locks in the grid
dim3 dimBlock (1 , 1 , 1) ; // 1 thread per block

specifies n blocks per grid and one thread per block. One can also impose
imaginary two- and three-dimensional structures on the grid and blocks,
to be explained below; in the above code, the 1 in dimGrid(n,1) and the
latter two 1s in dimBlock(1,1,1) here basically decline to use this feature.
The advantage of having more than one thread per block will be discussed
below. In this simple code, we have a separate thread for each row of the
matrix.

In the kernel code itself, the line

i n t rownum = blockIdx . x ;

determines which matrix row this particular thread will handle, as follows.
Each block and thread has an ID, stored in programmer-accessible structs
blockIdx and threadIdx, consisting of the block ID within the grid, and

6.4. INTRODUCTION TO NVIDIA GPUS AND CUDA 163

the thread ID within the block. Since in our case we’ve set up only one
thread per block, the block ID is effectively the thread ID.

The .x field refers to first coordinate in the block ID. The “coordinates”
of a block within the grid, and of a thread within a block, are merely
abstractions. If for instance one is programming computation of heat flow
across a two-dimensional slab, the programmer may find it clearer to use
two-dimensional IDs for the threads. But this does not correspond to any
physical arrangement in the hardware.

Some other points to mention:

• One compiles such code using nvcc in the CUDA toolkit, e.g.

% nvcc −o rowsums RowSums . cu

would produce an executable file rowsums. Note that nvcc is a
wrapper for an underlying compiler such as gcc, so all the command-
line options of the latter are retained. Adding the -g option will
enable debugging, for instance (though only on the host).1

The standard source file name suffix for CUDA is .cu. This can be
overridden via the -x flag, e.g.

% nvcc −x cu −o rowsums RowSums . c

A very important option is to specify the target GPU architecture.
Since the NVIDIA family has evolved over time, one needs to tell the
compiler to prepare code for a certain family member or higher. This
is specified with the -arch command line flag, e.g.

nvcc x . cu −arch=sm 11

tells the compiler that we need code for compute capability (an NVIDIA
term) of at least 1.1, say because we call the CUDA function atom-
icAdd().

• Another issue regarding GPU architecture is that earlier models did
not support the double type. At least on my systems, though, nvcc
automatically downgrades your double variables to float, with a
warning message. Note that even if your GPU supports double, use
of that type will slow down computation.

• Kernels can only have return type void. Thus a kernel must return
its results through its arguments.

1Installing CUDA is beyond the scope of this book.

164 CHAPTER 6. SHARED-MEMORY: GPUS

• Functions that will run on the device other than the kernel are denoted
by the prefix device . These functions can have return values.
They are called only by kernels or by other device functions.

By the way, a note on the innocuous-looking code

i n t ∗hm, // host matrix
∗dm, // dev i c e matrix

Here obviously hm is a memory address on the CPU. But in spite of the
comment, dm is not a memory address on the GPU. Instead, dm will point
to a C struct on the CPU, one of whose fields is the address of our matrix
on the GPU. And of course, the CPU and GPU address spaces are not
related to each other.2

6.4.2 NVIDIA GPU Hardware Structure

Scorecards, get your scorecards here! You can’t tell the players without a
scorecard—classic cry of vendors at baseball games

Know thy enemy—Sun Tzu, The Art of War

The enormous computational potential of GPUs cannot be truly unlocked
without an intimate understanding of the hardware. This of course is a
fundamental truism in the parallel processing world, but it is acutely im-
portant for GPU programming. This section presents an overview of the
hardware.3

6.4.2.1 Cores

A GPU consists of a large set of streaming multiprocessors (SMs). Since
each SM is essentially a multicore machine in its own right, you might say
the GPU is a multi-multicore machine. Though the SMs run independently,
they share the same GPU global memory. On the other hand, unlike ordi-
nary multicore systems, there are only very limited (and slow) facilities for
barrier synchronization and the like.

2Later GPU models do allow for a unified view of the two spaces.
3Some readers may benefit from some pictures, many good sets of which are avail-

able on the Web, such as http://cs.nyu.edu/courses/spring12/CSCI-GA.3033-012/

lecture5.pdf.

6.4. INTRODUCTION TO NVIDIA GPUS AND CUDA 165

Each SM in turn consists of a number of streaming processors (SPs)—the
individual cores. The cores run threads, as with ordinary cores, but threads
in an SM run in lockstep, to be explained below.

It is important to understand the motivation for this SM/SP hierarchy:
Two threads located in different SMs cannot synchronize with each other
in the barrier sense. Though this sounds like a negative at first, it is actually
a great advantage, as the independence of threads in separate SMs means
that the hardware can run faster. So, if the CUDA application programmer
can write his/her algorithm so as to have certain independent chunks, and
those chunks can be assigned to different SMs (we’ll see how, shortly), then
that’s a “win.”

6.4.2.2 Threads

As we have seen, when you write a CUDA application program, you parti-
tion the threads into groups called blocks. The salient points are:

• The hardware will assign an entire block to a single SM, though sev-
eral blocks can run in the same SM.

• Barrier synchronization is possible for threads within the same block.

• Threads in the same block can access a programmer-managed cache
called, confusingly, shared memory.

• The hardware divides each block into warps, currently 32 threads to
a warp.

• Thread scheduling is handled on a warp basis. When some cores
become free, this will occur with a set of 32 of them. The hardware
then finds a new warp of threads to run on these 32 cores.

• All the threads in a warp run the code in lockstep. During the machine
instruction fetch cycle, the same instruction will be fetched for all of
the threads in the warp. Then in the execution cycle, each thread will
either execute that particular instruction or execute nothing. The
execute-nothing case occurs in the case of branches; see below.

This is the classical single instruction, multiple data (SIMD) pattern
used in some early special-purpose computers such as the ILLIAC;
here it is called single instruction, multiple thread (SIMT).

166 CHAPTER 6. SHARED-MEMORY: GPUS

Knowing that the hardware works this way, the programmer controls the
block size and the number of blocks, and in general writes the code to take
advantage of how the hardware works.

6.4.2.3 The Problem of Thread Divergence

The SIMT nature of thread execution has major implications for perfor-
mance. Consider what happens with if/then/else code. If some threads
in a warp take the “then” branch and others go in the “else” direction,
they cannot operate in lockstep. That means that some threads must wait
while others execute. This renders the code at that point serial rather than
parallel, a situation called thread divergence. As one CUDA Web tutorial
points out, this can be a “performance killer.” Threads in the same block
but in different warps can diverge with no problem.

6.4.2.4 “OS in Hardware”

Each SM runs the threads on a timesharing basis, just like an operating
system (OS). This timesharing is implemented in the hardware, though,
not in software as in the OS case. (The reader may wish to review Section
2.6 before continuing.)

The “hardware OS” runs largely in analogy with an ordinary OS:

• A thread in an ordinary OS is given a fixed-length timeslice, so that
threads take turns running. In a GPU’s hardware OS, warps take
turns running, with fixed-length timeslices.

• With an ordinary OS, if a thread reaches an input/output operation,
the OS suspends the thread while I/O is pending, even if its turn is
not up. The OS then runs some other thread instead, so as to avoid
wasting CPU cycles during the long period of time needed for the
I/O.

With an SM, the analogous situation occurs when there is a long
memory operation, to global memory. If a warp of threads needs to
access global memory, the SM will schedule some other warp while
the memory access is pending. (Even for a currently-executing warp,
the hardware accesses memory only one half-warp at a time.)

The hardware support for threads is extremely good; a context switch from
one warp to another takes very little time, quite a contrast to the OS

6.4. INTRODUCTION TO NVIDIA GPUS AND CUDA 167

case. Moreover, as noted above, the long latency of global memory may
be solvable by having a lot of threads that the hardware can timeshare to
hide that latency; while one warp is fetching data from memory, another
warp can be executing, thus not losing time due to the long fetch delay.
For these reasons, CUDA programmers typically employ a large number of
threads, each of which does only a small amount of work—again, quite a
contrast to something like OpenMP.

6.4.2.5 Grid Configuration Choices

In choosing the number of blocks and the number of threads per block, one
typically knows the number of threads one wants (recall, this may be far
more than the device can physically run at one time, due to the desire to
ameliorate memory latency problems), so configuration mainly boils down
to choosing the block size. This is a delicate art, again beyond the scope
of this book, but here is an overview of the considerations:

• The device will have limits on the block size, number of threads on
an SM, and so on. (See Section 6.4.2.9 below.)

• Given that scheduling is done on a warp basis, block size should be a
multiple of the warp size, currently 32.

• One wants to utilize all the SMs. If one sets the block size too large,
not all will be used, as a block cannot be split across SMs.

• As noted, barrier synchronization can be done effectively only at the
block level. The larger the block, the more the barrier delay, so one
might want smaller blocks.

• On the other hand, if one is using shared memory, this can only be
done at the block level, and efficient use may indicate using a larger
block.

• Two threads doing unrelated work, or the same work but with many
if/elses, would cause a lot of thread divergence if they were in the same
block. In some cases, it may be known in advance which threads will
do the “ifs” and which will do the “elses,” in which case they should
be placed in different blocks if possible.

• A commonly-cited rule of thumb is to have between 128 and 256
threads per block.

168 CHAPTER 6. SHARED-MEMORY: GPUS

6.4.2.6 Latency Hiding in GPUs

In our code example in Section 6.4.1, we had one thread per row of the
matrix. That degree of fine-grained parallelism may surprise those who are
used to classical shared-memory programming. Section 2.7 did note that
it may be beneficial to have more threads than cores, due to cache effects
and so on, but in the multicore setting this would mean just a few more.
By contrast, in the GPU world, it’s encouraged to have lots of threads,4 in
order to circumvent the memory latency problems in GPUs: If the GPU
operating system senses that there may be quite a delay in the memory
access needed by a given thread, that thread is suspended and another is
found to run; by having a large number of threads, we ensure that the OS
will succeed in finding a new thread for this. Here we are using latency
hiding (Section 2.5).

Note too that while the previous paragraph spoke of the OS sensing that a
thread faces a memory delay, that was an oversimplification. Since threads
are scheduled in warps, if just one thread faces a memory delay, then the
entire warp must wait.

On the other hand, this is actually a plus, as follows. The global memory in
GPUs uses low-order interleaving, which means that consecutive memory
addresses are physically stored in simultaneously accessible places. And
furthermore, the memory is capable of burst mode, meaning that one can
request accesses to several consecutive locations at once.

This means we can reap great benefits if we can design our code so that con-
secutive threads access consecutive locations in memory. In that case, you
can see why the NVIDIA designers were wise to schedule thread execution
in warp groups, giving us excellent latency hiding.

6.4.2.7 Shared Memory

As noted earlier, the GPU has a small amount of shared memory, the
term shared meaning that threads in a block share that storage. Access
to shared memory is both low-latency and high-bandwidth, compared to
access of global memory, which is off-chip. As noted, the size is small, so the
programmer must anticipate what data, if any, is likely at any given time to
be accessed repeatedly by the code. If data exists, the code can copy it from
global memory to shared memory, and access the latter, for a performance
win. In essence, shared memory is a programmer-managed cache.

4There are limits, however, and a request to set up too many threads may fail.

6.4. INTRODUCTION TO NVIDIA GPUS AND CUDA 169

The shared memory is allocated in the kernel launch, as a third configura-
tion parameter, e.g.

s i eve<<<dimGrid , dimBlock , ps i ze>>>(dprimes , n , nth) ;

It needs declaration within a kernel, e.g.

extern shared i n t spr imes [] ;

6.4.2.8 More Hardware Details

Details of the use of shared memory are beyond the scope of this book.
Indeed, there is so much more than what could be comfortably included
here.

All this illustrates why our discussion in Section 6.2 recommended that
most users either (a) settle for writing “pretty fast but simple” CUDA
code, and/or (b) rely mainly on libraries of either preoptimized CUDA
code or R code that interfaces to high-quality CUDA code.

6.4.2.9 Resource Limitations

Any CUDA device has limits on the number of blocks, threads per block
and so on. For safety, calls to cudaMalloc() should be accompanied by
error checking, something like

i f (cudaSuccess != cudaMalloc (. . .)) { . . . }

Here is code that prints out some selected resource limits:

#include <cuda . h>
#include <s t d i o . h>

int main ()
{

cudaDeviceProp Props ;
cudaGetDevicePropert ies (&Props , 0) ;

p r i n t f (” shared mem: %d)\n” ,
Props . sharedMemPerBlock) ;

p r i n t f (”max threads/block : %d\n” ,
Props . maxThreadsPerBlock) ;

p r i n t f (”max b locks : %d\n” , Props . maxGridSize [0]) ;

170 CHAPTER 6. SHARED-MEMORY: GPUS

p r i n t f (” t o t a l Const mem: %d\n” , Props . totalConstMem) ;
}

I compiled and ran the program on my machine:

% nvcc -o cudaprops CUDAProperties.cu

% cudaprops

shared mem: 49152)

max threads/block: 1024

max blocks: 65535

total Const mem: 65536

Consult the documentation for cudaGetDeviceProperties() to deter-
mine other resource limits.

6.5 Example: Mutual Inlinks Problem

Once again, our example involves our mutual Web outlinks problem, first
introduced in Section 1.4. Here is one approach to the calculation on a
GPU, but with the same change made in Section 5.9.1: We now look at
inbound links. Thus we are looking for matches of 1s between pairs of
columns of the adjacency matrix, as opposed to rows in the outlinks exam-
ples. (Or equivalently, suppose we are interested in outlinks but are storing
the matrix in transpose form.)

The reason for this change is that the example will illustrate the principle
of GPU latency hiding discussed in Section 6.4.2.6. Consider threads 3
and 4, say. In the “i” (i.e., outermost) loop in the code below. these two
threads will be processing consecutive columns of the matrix. Since the
GPU is running the two threads in lockstep, and because storage is in row-
major order, thread 4 will always be accessing an element of the matrix
in the same row as thread 3, but with the two accesses being to adjacent
elements. Thus we can really take advantage of burst mode in the memory
chips.

6.5.1 The Code

// MutIn . cu : f i n d s mean number o f mutual i n l i n k s ,
// among a l l p a i r s o f Web s i t e s in our s e t ; in
// check ing (i , j) pa i r s , thread k w i l l handle a l l i

6.5. EXAMPLE: MUTUAL INLINKS PROBLEM 171

// such that i mod tot th = k , where to t th i s
// the number o f threads

// usage :
//
// mutin numvert ices numblocks

#include <cuda . h>
#include <s t d i o . h>
#include <s t d l i b . h>

// block s i z e i s hard coded as 192
#define BLOCKSIZE 192

// ke rne l : p r o c e s s e s a l l p a i r s a s s i gned to
// a given thread

g l o b a l void p r o c pa i r s (int ∗m, int ∗ tot , int n)
{

// t o t a l number o f threads =
// number o f b locks ∗ block s i z e
int to t th = gridDim . x ∗ BLOCKSIZE,

// my thread number
me = blockIdx . x ∗ blockDim . x + threadIdx . x ;

int i , j , k , sum = 0 ;
// var i ous columns i
for (i = me ; i < n ; i += tot th) {

for (j = i +1; j < n ; j++) { // a l l columns j > i
for (k = 0 ; k < n ; k++)

sum += m[n∗k+i] ∗ m[n∗k+j] ;
}

}
atomicAdd (tot , sum) ;

}

int main (int argc , char ∗∗argv)
{ int n = a t o i (argv [1]) , // number o f v e r t i c e s

nblk = a t o i (argv [2]) ; // number o f b locks
// the usua l i n i t i a l i z a t i o n s
int ∗hm, // host matrix

∗dm, // dev i c e matrix
htot , // host grand t o t a l
∗dtot ; // dev i c e grand t o t a l

int msize = n ∗ n ∗ s izeof (int) ;

172 CHAPTER 6. SHARED-MEMORY: GPUS

hm = (int ∗) mal loc (msize) ;
// as a te s t , f i l l matrix with random 1 s and 0 s
int i , j ;
for (i = 0 ; i < n ; i++) {

hm[n∗ i+i] = 0 ;
for (j = 0 ; j < n ; j++) {

i f (j != i) hm[i ∗n+j] = rand () % 2 ;
}

}
// more o f the usua l i n i t i a l i z a t i o n s
cudaMalloc ((void ∗∗)&dm, msize) ;
// copy host matrix to dev i c e matrix
cudaMemcpy(dm,hm, msize , cudaMemcpyHostToDevice) ;
htot = 0 ;
// s e t up dev i ce t o t a l and i n i t i a l i z e i t
cudaMalloc ((void ∗∗)&dtot , s izeof (int)) ;
cudaMemcpy(dtot ,&htot , s izeof (int) ,

cudaMemcpyHostToDevice) ;
// OK, ready to launch kerne l , so c o n f i g u r e g r id
dim3 dimGrid (nblk , 1) ;
dim3 dimBlock (BLOCKSIZE, 1 , 1) ;
// launch the ke rne l
procpa i r s<<<dimGrid , dimBlock>>>(dm, dtot , n) ;
// wait for ke rne l to f i n i s h
cudaThreadSynchronize () ;
// copy t o t a l from dev i ce to host
cudaMemcpy(&htot , dtot , s izeof (int) ,

cudaMemcpyDeviceToHost) ;
// check r e s u l t s
i f (n <= 15) {

for (i = 0 ; i < n ; i++) {
for (j = 0 ; j < n ; j++)

p r i n t f (”%d ” ,hm[n∗ i+j]) ;
p r i n t f (”\n”) ;

}
}
p r i n t f (”mean = %f \n” , htot/ (f loat) ((n∗ (n−1))/ 2)) ;
// c l ean up
f r e e (hm) ;
cudaFree (dm) ;
cudaFree (dtot) ;

}

6.6. SYNCHRONIZATION ON GPUS 173

By now the reader will immediately recognize that the reason for stagger-
ing the columns is that a given thread handles is to achieve load balance.
Also, we’ve continued to calculate the “dot product” between each pair
of columns, to avoid thread divergence. The only new material, a call to
atomicAdd() is discussed in Section 6.6.

6.5.2 Timing Experiments

The code was run on a machine with a Geforce 285 GPU, for various num-
bers of blocks, with a comparison to ordinary CPU code. Here are the
results, with times in seconds:

blocks time
CPU 97.26

4 4.88
8 3.17

16 2.48
32 2.36

So, first of all, we see that using the GPU brought us a dramatic gain!
Note, though, that while GPUs work quite well for certain applications,
they do poorly on others. Any algorithm that necessarily requires a lot of
if-then-else operations, for instance, is a poor candidate for GPUs, and the
same holds if the algorithm needs a considerable number of synchronization
operations. Even in our Web link example here, the corresponding speedup
was far more modest for the outlinks version (not shown here), due to the
memory latency issues we’ve discussed.

Second, the number of blocks does matter. But since our block size was
192, we can only use about 1750/192 blocks, so there was no point in going
beyond 32 blocks.

6.6 Synchronization on GPUs

The call

atomicAdd (tot ,sum) ;

is similar to the material in Section 5.12. There it was mentioned that
in some CPU architectures it is possible to do operations like atomic add,

174 CHAPTER 6. SHARED-MEMORY: GPUS

in which a single machine instruction increments a shared sum, with the
operation being atomic but not requiring lock variables. The latter aspect
can substantially enhance performance.

The NVIDIA GPUs (except for the earliest models) do offer several atomic
operations like this, such as the one we’ve used above.5 Others include
atomicExch() (exchange the two operands), atomicCAS() (if the first
operand equals the second, replace the first by the third), atomicMin(),
atomicMax(), atomicAnd(), atomicOr(), and so on.

In compiling code with these operations, we must warn the compiler that
it needs to produce an executable that runs on Model 1.1 and above:

% nvcc −o mutin MutIn . cu −arch=sm 11

These operations look good, but appearances can be deceiving, in this case
masking the fact that these operations are extremely slow. For example,
though a barrier could in principle be constructed from the atomic op-
erations, its overhead would be quite high. In earlier models that delay
was near a microsecond, and though that problem has been ameliorated in
more recent models, implementing a barrier in this manner would not be
not much faster than attaining interblock synchronization by returning to
the host and calling cudaThreadSynchronize() there. The latter is a
possible way to implement a barrier, since global memory stays intact in
between kernel calls, but again, it would be slow.

NVIDIA does offer barrier synchronization at the block level, via a call to
syncthreads(). This is reasonably efficient, but it still leaves us short of

an efficient way to do a global barrier operation, across the entire GPU.

The overall outcome from all of this is that algorithms that rely heavily on
barriers may not run well on GPUs.

6.6.1 Data in Global Memory Is Persistent

Data in global memory persists through the life of the program. In other
words, if our program does

allocate space for an array dx in GPU global memory

copy a host array hx to dx

call some kernel that uses (and possibly modifies) dx

do some more computation

call some kernel that uses (and possibly modifies) dx

5Note that the first argument must be an address on the GPU, which it is here.

6.7. R AND GPUS 175

then in that second kernel execution, dx will still contain whatever data it
had at the end of the first kernel call.

The above scenario occurs in many GPU-based applications. For example,
consider iterative algorithms. As noted in Section 6.6 it is difficult to have
a barrier operation across blocks, and it may be easier just to return to the
CPU after each iteration, in essence using cudaThreadSynchronize() to
implement a barrier. Or, the algorithm itself may not be iterative, but
our data may be too large to fit in GPU memory, necessitating doing the
computation one chunk at a time, with a separate kernel call for each chunk.

In such scenarios, if we had to keep copying back and forth between hx and
dx, we may incur very significant delays. Thus we should exploit the fact
that data in global memory does persist across kernel calls.6

Some GPU libraries for R, such as gputools, do not exploit this persistence
of data in global memory. However, the gmatrix package on CRAN does
do this, as does RCUDA.

6.7 R and GPUs

Given the numerical nature of most R applications, it is natural that pack-
ages have been developed for interface between R and GPUs, yet another
example of the “R+X” notion introduced in Section 1.1. A good place
to check what is currently available in this regard is the CRAN Task
View, “High-Performance and Parallel Computing with R” (http://cran.
r-project.org/web/views/HighPerformanceComputing.html). This is
especially true for matrix operations, which by virtue of their regular pat-
tern makes them generally well-suited to GPU computation.

Examples using R packages for GPUs will often appear in the succeeding
chapters, but let’s do one here first:

6.7.1 Example: Parallel Distance Computation

The gputools package is probably the most commonly-used GPU package
for R. It consists mainly of linear algebra operations, but let’s take a look
at what it does for distance computation.

6By contrast, for instance, data in shared memory lives only during the given kernel
call.

176 CHAPTER 6. SHARED-MEMORY: GPUS

In Section 3.9, we used snow to parallelize computation of distances of
rows in one matrix to rows in another. The base R function dist() cal-
culates distances of rows in a single matrix to those in the same matrix.
The gputools function gpuDist() does this intramatrix computation too,
but on a GPU. In their simplest call forms, both functions have a single
argument, the matrix.

Again, the very regular nature of the computation here should allow the
GPU to bring us major speedups. This is indeed the case.

I installed the package as usual:7

> in s ta l l . packages (” gputoo l s ” , ”˜/Pub/Rlib ”)

I filled n×n matrices with U(0,1) data, for various n, comparing run times.
Here are the results, in seconds:

n dist() gpuDist(

1000 3.671 0.258
2500 103.219 3.220
5000 609.271 error

The speedups in the first two cases are quite impressive, but an execution
error occurred in the last case, with a message, “the launch timed out and
was terminated.” The problem here was that the GPU was being used
both for computation and for the ordinary graphics screen of the computer
housing the GPU. One can disable the timeout if one owns the machine,
or better, purchase a second GPU for computation only. GPU work is not
easy...

6.8 The Intel Xeon Phi Chip

GPUs are just one kind of accelerator chip. Others exist, and in fact go
back to the beginning of the PC era in the 1980s, when one could purchase
a floating-point hardware coprocessor.

The huge success of the NVIDIA GPU family did not go unnoticed by
Intel. In 2013 Intel released the Xeon Phi chip, which had been under
development for several years. At this writing (Spring 2014), NVIDIA has

7If you have CUDA installed in a nonstandard location, you’ll need to download the
gputools source and then build using R CMD INSTALL, specifiying the locations
of the library and include files. See the INSTALL file that is included in the package.
During execution and use, be sure your environment variable LD LIBRARY PATH
includes the CUDA library.

6.8. THE INTEL XEON PHI CHIP 177

a large head start in this market, so it is unclear how well the Intel chip
will do in the coming years.

The Xeon Phi features 60 cores, each 4-way hyperthreaded, thus with a
theoretical level parallelism level of 240. This number is on the low end
of NVIDIA chips. But on the other hand, the Intel chip is much easier
to program, as it has much more of a classic multicore design. One can
run OpenMP, MPI and so on. As with GPUs, though, the bandwidth and
latency for data transfers between the CPU and the accelerator chip can
be a major issue.

It must again be kept in mind that while the NVIDIA chips can attain
exceptionally good performance on certain applications, they perform poorly
on others. A number of analysts have done timing tests, and there are
indeed applications for which the Intel chip seems to do better than, for
instance, the NVIDIA Tesla series, in spite of having fewer cores.

Chapter 7

Thrust and Rth

As discussed in Section 6.2, GPU programming is difficult to do at true effi-
ciency, so it was recommended to make use of GPU code libraries whenever
possible. One such library is Thrust, to be presented in this chapter.

In turn, Thrust programming itself requires good facility with C++, espe-
cially some of the more esoteric features. An alternative is the Rth package,
which gives R programmers access to certain algorithms written in Thrust,
without those programmers needing to know Thrust/C/C++/CUDA; this
package too will be presented here.

Even more valuable is the fact that Thrust, and thus Rth, can be used not
only on GPU-equipped machines, but also on multicore systems! In fact,
Thrust can be directed to produce OpenMP or Thread Building Blocks
(TBB code, Section 5.11) code.

7.1 Hedging One’s Bets

It is very unclear how the price-performance tradeoff for shared-memory
systems will evolve in the coming years—multicore, GPU, accelerators like
the Intel Xeon Phi, or whatever else may be in store for us. On the other
hand, as discussed in Section 4.2, the shared memory paradigm is attractive,
especially for certain types of applications, and it would be desirable to
write code that works on various types of shared memory hardware.

Several software systems have been developed to “hedge one’s bets” in this
sense. OpenCL, for instance, is an extension of C/C++ that is designed for

179

180 CHAPTER 7. THRUST AND RTH

such heterogeneous computing. Two such “bet hedging” systems, Thrust
and Rth, will be presented here.

7.2 Thrust Overview

Thrust was developed by NVIDIA, maker of the graphics cards that run
CUDA. It consists of a collection of C++ templates, modeled after the
C++ Standard Template Library (STL). One big advantage of the template
approach is that no special compiler is needed; Thrust is simply a set of
“#include” files.

In one sense, Thrust may be regarded as a higher-level way to develop GPU
code, avoiding the tedium of details that arise when programming GPUs.
But more important, as noted above, Thrust does enable heterogeneous
computing, in the sense that it can produce different versions of machine
code to run on different platforms.

When one compiles code using Thrust, one can choose the backend, be
it GPU code or multicore. In the latter case one can currently choose
OpenMP or TBB for multicore machines.

In other words, Thrust allows when to write a single piece of code that can
run either on a GPU or on a classic multicore machine. The code of course
will not be optimized, but in many cases one will attain reasonable speed
for this diversity of hardware types.

7.3 Rth

As will be seen below, even though Thrust is designed to ease the task
of GPU programming, coding in Thrust is somewhat difficult. C++ tem-
plate code can become quite intricate and abstract if you are not used to
something like the STL (or even if you do have STL experience).

Thus once again it is desirable to have R libraries available that interface
to a lower-level language, the “R+X” concept mentioned in Section 1.1.2.
Drew Schmidt and I have developed Rth (https://github.com/Rth-org/
Rth), an R package that builds on Thrust. Rth implements a number of
R-callable basic operations in Thrust.

The goal is to give the R programmer the advantages of Thrust, without
having to program in Thrust (let alone C++, CUDA or OpenMP) him or

7.4. SKIPPING THE C++ 181

herself.

For instance, Rth provides a parallel sort, which is really just an R wrapper
for the Thrust sort. (See Section 10.5.) Again, this is a versatile sort, in
that it can take advantage of both GPUs and multicore machines.

7.4 Skipping the C++

C++ is increasingly becoming an important element of the R programmer’s
toolkit. However, readers who wish to put aside C++ for now can skip the
Thrust programming material, and go directly to Rth, Section 7.6.

7.5 Example: Finding Quantiles

Although the initial learning curve is a bit steep, Thrust programming is
straightforward. Below is Thrust code to extract every kth element of an
array. It thus finds the i · k/n quantiles of the data, i = 1, 2, Note that
though the “device” is the GPU if that is the backend, in the multicore
case it is simply shared memory.1

7.5.1 The Code

There are of course many ways to write code for a given application, and
that certainly is the case here. The approach shown below is here mainly
to illustrate how Thrust works, rather than being claimed an optimal im-
plementation.

// Quant i l e s . cpp , Thrust example

// c a l c u l a t e every k−th element in g iven numbers ,
// going from s m a l l e s t to l a r g e s t ; k obta ined from
// command l i n e and fed in to the i smultk () func to r

// the se are the ik/n ∗ 100 p e r c e n t i l e s , i = 1 , 2 , . . .

#include <s t d i o . h>

1If one is only going to use multicore backends, it’s better not to copy to a device, to
avoid the overhead in copying potentially very large objects.

182 CHAPTER 7. THRUST AND RTH

#include <th rus t/dev i c e vec to r . h>
#include <th rus t/ s o r t . h>
#include <th rus t/ sequence . h>
#include <th rus t/copy . h>

// f unc to r
struct i smultk {

const int increm ; // k in above comments
// get k from c a l l
i smultk (int increm) : increm (increm) {}

dev i c e bool operator () (const int i)
{ return i != 0 && (i % increm) == 0 ;
}

} ;

int main (int argc , char ∗∗argv)
{ int x [1 5] =

{6 , 12 , 5 , 13 , 3 , 5 , 4 , 5 , 8 , 88 , 1 , 11 , 9 , 22 , 168} ;
int n=15;
// c r e a t e int vec to r dx on the device , i n i t . to
// x [0] , x [1] , . . . , x [n−1]
th rus t : : dev i c e vector<int> dx (x , x+n) ;
// s o r t dx in−p lace
th rus t : : s o r t (dx . begin () , dx . end ()) ;
// c r e a t e a vec to r seq o f l ength n
thrus t : : dev i c e vector<int> seq (n) ;
// f i l l seq with 0 , 1 , 2 , . . . n−1
thrus t : : sequence (seq . begin () , seq . end () , 0) ;
// s e t up space to s t o r e our q u a n t i l e s
th rus t : : dev i c e vector<int> out (n) ;
// obta in k from command l i n e
int i n c r = a t o i (argv [1]) ;
// for each i in seq , c a l l i smultk () on t h i s i ,
// and i f get a t rue r e s u l t , put dx [i] i n to out ;
// return po in t e r to (one element past) the end
// o f t h i s output array
thrus t : : dev i c e vector<int > : : i t e r a t o r newend =

thrus t : : copy i f (dx . begin () , dx . end () , seq . begin () ,
out . begin () , i smultk (i n c r)) ;

// pr in t r e s u l t s
th rus t : : copy (out . begin () , newend ,

std : : ostream i t e r a t o r<int>(std : : cout , ” ”)) ;
s td : : cout << ”\n” ; }

7.5. EXAMPLE: FINDING QUANTILES 183

7.5.2 Compilation and Timings

As mentioned, a big advantage of Thrust is that one doesn’t need a special
compiler, as it consists only of “include” files. So, to compile a Thrust
application for a multicore backend, say for OpenMP, one can use gcc or
any other OpenMP-enabled compiler. Of course, for a GPU backend, one
uses nvcc.

The Thrust library is included with CUDA. But the multicore machine used
in many of the examples in this book does not have an NVIDIA GPU, so I
downloaded Thrust from http://thrust.github.com/, and unzipped the
package in a subdirectory I chose to name Thrust in my home directory.
The unzip operation produced the further subdirectory Thrust/thrust,
in which the .h files reside.

To compile the above source, Quantiles.cpp, for an OpenMP backend, I
typed

g++ −o quants Quant i l e s . cpp −fopenmp \
−DTHRUST DEVICE SYSTEM=THRUST DEVICE SYSTEM OMP \
−lgomp −I/home/mat l o f f/Thrust −g

For TBB, I used

g++ −o quants Quant i l e s . cpp −g \
−DTHRUST DEVICE SYSTEM=THRUST DEVICE SYSTEM TBB \
−l tbb −I/home/mat l o f f/Thrust \
−I/home/mat l o f f/Pub/TBB/ i n c lude \
−L/home/mat l o f f/Pub/TBB/ l i b /tbb

I later tried it on a GPU on a different machine, typing

nvcc −x cu −o quants Quant i l e s . cpp −g

(No need to state where Thrust is, as it is built in to CUDA.)

7.5.3 Code Analysis

In Thrust, one works with vectors rather than arrays, in the sense that
vectors are objects, very much like in R. They thus have built-in methods,
leading to expressions such as dx.begin(), a function call that returns the
location of the start of dx. Similarly, dx.size() tells us the length of dx,
dx.end() points to the location one element past the end of dx and so on.

184 CHAPTER 7. THRUST AND RTH

Note that though dx.begin() acts like a pointer, it is called an iterator,
with broader powers than those of a pointer.

Most of the vector operations in the code are described in the comments.
But where things get interesting is the struct ismultk, which though an
ordinary C struct, is known as a functor in C++ terminology.

A functor is a C++ mechanism to produce a callable function, largely
similar in goal to using a pointer to a function but with the added notion
of saved state. This is done by turning a C++ struct or class object into
a callable function. Since structs and classes can have member variables,
we can store needed data in them, and that is what distinguishes functors
from function pointers. Consider the code:

th rus t : : dev i c e vector<int > : : i t e r a t o r newend =
thrus t : : copy i f (dx . begin () , dx . end () , seq . begin () ,

out . begin () , i smultk (i n c r)) ;

The key here is the function copy if(), which as the name implies copies
all elements of an input vector (dx here) that satisfy a certain predicate.
The latter role is played by ismultk, to be explained shortly, with the help
of a stencil, in this case the vector seq.

The output is stored here in out, but not all of that vector will be filled.
Thus the return value of copy if(), assigned here to newend, is used to
inform us as to where the output actually ends.

Now let’s look at ismultk (“is a multiple of k”):

struct i smultk {
const int increm ; // k in above comments
// get k from c a l l
i smultk (int increm) : increm (increm) {}

dev i c e bool operator () (const int i)
{ return i != 0 && (i % increm) == 0 ;
}

} ;

The keyword operator here tells the compiler that ismultk will serve
as a function. At the same time, it is also a struct, containing the data
increm, which as the comments note, is “k” in our description “take every
kth element of the array.”

7.5. EXAMPLE: FINDING QUANTILES 185

Now, how is that function called? Let’s look at the copy if() call examined
above:

th rus t : : copy i f (dx . begin () , dx . end () , seq . beg in () ,
out . begin () , i smultk (i n c r)) ;

Inside that call is another call! It is in the code

i smultk (i n c r)

and what that call does is instantiate the struct ismultk. In other words,
that call returns a struct of type ismultk, with the member variable in-
crem in that struct being set to incr. That assignment is done in the
line,

i smultk (i n t increm) : increm (increm) {}

In other words: The inner call to ismultk()

th rus t : : copy i f (dx . begin () , dx . end () , seq . beg in () ,
out . begin () , i smultk (i n c r)) ;

returns a function, whose body is

dev i c e bool operator () (const i n t i)
{ return i != 0 && (i % increm) == 0 ;
}

What copy if() does is apply that function to all values i in the stencil,
where the latter consists of 0,1,2,...,n-1.

So all of this is a roundabout way of copying dx[i] to out for i = k, 2k, 3k,
..., with ik not to exceed n-1. This is exactly what we want.

The word roundabout above is apt, and arguably is typical of Thrust (and,
for that matter, of the C++ STL). But we do get hardware generality from
that effect, with our code being applicable both to GPUs and multicore
platforms.

Important note: If you plan to write Thrust code on your own, or any other
code that uses functors, C++11 lambda functions can simplify things a lot.
See Section 11.6.4 for an example.

186 CHAPTER 7. THRUST AND RTH

7.6 Introduction to Rth

As noted, download the package from https://github.com/Rth-org/Rth.
For installation instructions, see the INSTALL file included in the pac-
ckage. Further information is available at the project home page, http:
//heather.cs.ucdavis.edu/~matloff/rth.html.

As an example, let’s compute standard (Pearson product-moment) correla-
tion, comparing the run time to R’s built-in cor.test() function, with two
and then eight threads on a multicore backend:

> n <− 100000000
> tmp <− matrix (runif (2∗n) , ncol=2)
> x <− tmp [, 1]
> y <− x + tmp [, 2]
> system . time (c1 <− cor . t e s t (x , y))

user system e lapsed
13 .150 1 .166 14 .333

> c1$ es t imate
cor

0.7071664
> system . time (c2 <− r thpearson (x , y , 2))

user system e lapsed
2 .843 0 .514 2 .471

> c2
[1] 0 .7071664
> system . time (c2 <− r thpearson (x , y , 8))

user system e lapsed
3 .540 0 .529 1 .792

Similar times emerged in repeat runs. This is a better-than-linear speedup,
probably due to a difference in algorithms.

As mentioned earlier, R programmers can use Rth without knowledge of
C++/CUDA/OpenMP/Thrust. But for those who wish to develop their
own Rth functions, here is how rthpearson() looks inside:

// Rth implementation o f Pearson product−moment
// c o r r e l a t i o n

// s i n g l e−pass , s u b j e c t to i n c r e a s e d roundo f f e r r o r

#include <th rus t/dev i c e vec to r . h>
#include <th rus t/ i nne r product . h>

7.6. INTRODUCTION TO RTH 187

#include <math . h>

#include <Rcpp . h>
#include ”backend . h”

typedef th rus t : : dev i c e vector<int> i n tv e c ;
typedef th rus t : : dev i c e vector<double> doublevec ;

RcppExport SEXP rthpearson (SEXP x , SEXP y ,
SEXP nthreads)

{
Rcpp : : NumericVector xa (x) ;
Rcpp : : NumericVector ya (y) ;
int n = xa . s i z e () ;
doublevec dx (xa . begin () , xa . end ()) ;
doublevec dy (ya . begin () , ya . end ()) ;
double zero = (double) 0 . 0 ;

#i f RTH OMP
omp s e t num threads (INT(nthreads)) ;
#e l i f RTH TBB
tbb : : task s chedu l e r i n i t i n i t (INT(nthreads)) ;
#e n d i f

double xy =
thrus t : : i nne r product (dx . begin () , dx . end () ,

dy . begin () , ze ro) ;
double x2 =

thrus t : : i nne r product (dx . begin () , dx . end () ,
dx . begin () , ze ro) ;

double y2 =
thrus t : : i nne r product (dy . begin () , dy . end () ,

dy . begin () , ze ro) ;
double xt =

thrus t : : reduce (dx . begin () , dx . end ()) ;
double yt =

thrus t : : reduce (dy . begin () , dy . end ()) ;
double xm = xt/n , ym = yt/n ;
double xsd = s q r t (x2/n − xm∗xm) ;
double ysd = s q r t (y2/n − ym∗ym) ;
double cor = (xy/n − xm∗ym) / (xsd∗ysd) ;
return Rcpp : : wrap (cor) ;

}

188 CHAPTER 7. THRUST AND RTH

Here the Thrust function inner product() performs the “dot product”∑n
i=1XiYi, and Thrust’s reduce() does a reduction as with constructs of

a similar name in OpenMP and Rmpi; the default operation is addition.

Chapter 8

The Message Passing
Paradigm

The scatter-gather paradigm we’ve seen in earlier examples with snow
works well for many problems, but it can be confining. This chapter will
present a more general approach.

Instead of a situation in which the workers communicate only with the
manager, as in for instance in snow, think now of allowing the workers
to send messages to each other as well. This general case is known as the
message passing paradigm, the subject of this chapter.

8.1 Message Passing Overview

A message-passing package will have some kind of send() and receive()
functions for its basic operations, along with variants such as broadcasting
messages to all processes. In addition, there may be functions for other
operations, such as:

• Scatter/gather (Section 1.4.4).

• Reduction, similar to R’s Reduce() function.

• Remote procedure call, in which one process triggers a function call
at another process, similar to clusterCall() in snow.

189

190 CHAPTER 8. MESSAGE PASSING

The most popular C-level package for message passing is the Message Pass-
ing Interface (MPI), a collection of routines callable from C/C++.1 Pro-
fessor Hao Yu of the University of Western Ontario wrote an R package,
Rmpi, that interfaces R to MPI, as well as adding a number of R-specific
functions. Rmpi will be our focus in this chapter. (Two other popular
message-passing packages, PVM and 0MQ, also have had R interfaces de-
veloped for them, Rpvm and Rzmq, as well as a very promising new R
interface to MPI, pdbR.)

So with Rmpi, we might have, say, eight machines in our cluster. When we
run Rmpi from one machine, that will then start up R processes on each of
the other machines. This is the same as what happens when we use snow
on a physical cluster, where for example the call makeCluster(8), causes
there to be 8 R processes created on the manager’s machine. The various
processes will occasionally exchange data, via calls to Rmpi functions, in
order to run the given application in parallel. Again, this is the same as for
snow, but here the workers can directly exchange data with each other.

We’ll cover a specific example shortly. But first, let’s follow up on the
discussion of Section 2.5, and note the special issues that arise with message
passing code. (The reader may wish to review the concepts of latency and
bandwidth in that section before continuing.)

8.2 The Cluster Model

Message passing is a software/algorithmic notion, and thus does not im-
ply any special structure of the underlying hardware platform. However,
message passing is typically thought of as being run on a cluster, i.e., a
network of independent standalone machines, each having its own proces-
sor and memory. So, although MPI and Rmpi can be run on a multicore
machine, which is quite common, the mental model is still the cluster. We’ll
assume this situation throughout.

In a small business or university computing lab, for instance, one may
have a number of PCs, connected by a network. Though each PC runs
independently of the others, one can use the network to pass messages
among the PCs, thus forming a parallel processing system. In a dedicated
cluster, the nodes are typically not even full PCs; since the nodes are not
used as independent, general-purpose computers, one dispenses with the
keyboards and monitors, and places multiple PCs on the same rack.

1For an introduction to MPI, see my online book, Programming on Parallel Machines,
http://heather.cs.ucdavis.edu/parprocbook.

8.3. PERFORMANCE ISSUES 191

8.3 Performance Issues

Recall the discussion of network infrastructures in Section 2.4. The network
is, literally, the weakest link, meaning the major source of slowdown. In
data science applications, this delay can be especially acute, as copying
large amounts of data incurs a large time penalty.

A good cluster will typically have a fancier network than the standard Eth-
ernet used in an office or lab. An example is InfiniBand. In this technology,
the single communications channel is replaced by multiple point-to-point
links, connected by switches.

The fact that there are multiple links means that potential bandwidth is
greatly increased, and contention for a given link is reduced. InfiniBand
also strives for low latency.

Note, though, that even with InfiniBand, latency is on the order of a mi-
crosecond, i.e., a millionth of a second. Since CPU clock speeds are typically
more than a gigahertz, i.e., CPUs are capable of billions of operations per
second, even InfiniBand network latency presents considerable overhead.

One way of reducing the overhead arising from the network system soft-
ware is to use remote direct memory access (RDMA), which involves both
nonstandard hardware and software. The name derives from the Direct
Memory Access devices that are common in even personal computers today.

When reading from a fast disk, for instance, DMA can bypass the “mid-
dleman,” the CPU, and write directly to memory, a significant speedup.
(DMA devices in fact are special-purpose CPUs in their own right, de-
signed to copy data directly between an input-output device and memory.)
Disk writes can be done the same way.

With RDMA, we bypass a different kind of middleman, in this case the
network protocol stack in the operating system. When reading a message
arriving from the network, RDMA deposits the message directly into the
memory used by our program, bypassing the layers in the OS that handle
ordinary network traffic.

8.4 Rmpi

As noted, Rmpi is an R interface to the famous MPI protocol, the latter
normally being accessed via C, C++ or FORTRAN. MPI consists of dozens
of functions callable from user programs.

192 CHAPTER 8. MESSAGE PASSING

Note that MPI also provides network services beyond simply sending and
receiving messages. An important point is that it enforces message order.
If say, messages A and B are sent from process 8 to process 3 in that order,
then the program at process 3 will receive them in that order. A call at
process 3 to receive from process 8 will receive A first, with B not being
processed until the second such call.2

This makes the logic in your application code much easier to write. Indeed,
if you are a beginner in the parallel processing world, keep this foremost
in mind. Code that makes things happen in the wrong order (among the
various processes) is one of the most common causes of bugs in parallel
programming.

In addition, MPI allows the programmer to define several different kinds of
messages. One might make a call, for instance, that says in essence, “read
the next message of type 2 from process 8,” or even “read the next message
of type 2 from any process.”

Rmpi provides the R programmer with access to such operations, and
also provides some new R-specific messaging operations. It is a very rich
package, and we can only provide a small introduction here.

8.4.1 Installation and Execution

With all that power comes complexity. Rmpi can be tricky to install—and
even to launch—with various platform dependencies to deal with, such as
those related to different flavors of MPI. Since there are too many possible
scenarios, I will simply discuss an example setup.

On a certain Linux machine, I had installed MPI in a directory /home/-
matloff/Pub/MPICH, and then installed Rmpi as follows. After down-
loading the source package from CRAN, I ran

$ R CMD INSTALL − l ˜/Pub/Rlib Rm∗z \\
−−con f i gure−args=”−−with−mpi=/home/mat l o f f/Pub/MPICH \\
−−with−Rmpi−type=MPICH”

Here I stored Rmpi in the directory /home/matloff/Pub/Rlib.

The more difficult part was getting the package to actually run. With
some versions of MPI, the function mpi.spawn.Rslaves(), intended as a
standard way for the manager process to launch workers doesn’t work.3

2This assumes that the calls do not specify message type, discussed below.
3Rmpi uses master/slave terminology instead of manager/worker, and has been the

subject of some criticism on this point.

8.5. EXAMPLE: PIPELINED METHOD FOR FINDING PRIMES 193

Instead, I did the following setup to enable running Rmpi, making use of
a file Rprofile that comes with the Rmpi package for this purpose:

$ mkdir ˜/MyRmpi
$ cd ˜/MyRmpi
make copy o f R
$ cp /usr/bin/R Rmpi
make i t runnable
$ chmod u+x Rmpi
e d i t my s h e l l s ta r tup f i l e (not shown) :
p lace Rmpi f i l e in my execut ion path
add /home/mat l o f f/Pub/MPICH/ l i b
to LD LIBRARY PATH
e d i t Rmpi f i l e (not shown) :
a f t e r ” export R HOME” , i n s e r t
R PROFILE=/home/mat l o f f/MyRmpi/ R p r o f i l e ;
export R PROFILE
$ cp ˜/Pub/Rlib/Rmpi/ R p r o f i l e .
e d i t R p r o f i l e (not shown) :
i n s e r t at top
” . l i bPaths (’/home/mat l o f f/Pub/Rlib ’) ”
t e s t :
s e t up to run a l l p r o c e s s e s on l o c a l machine
$ echo ” l o c a l h o s t ” > hos t s
run MPI on the Rmpi f i l e , with 3 p r o c e s s e s
$ mpiexec −f hos t s −n 3 Rmpi −−no−save −q
R now running , with Rmpi loaded , mgr and 2 wrkrs
> mpi .comm. s i z e () # number o f p roce s s e s , should be 3
have the 2 workers run sum () , one on 1 :3 and
the other on 4 :5
> mpi . apply (l i s t (1 : 3 , 4 : 5) , sum) # should p r in t 6 , 9

8.5 Example: Pipelined Method for Finding
Primes

A common example of parallel algorithms consists of finding prime num-
bers. The connection to data science is not strong—though examples exist
in experimental design and cryptography—but the utter simplicity of the
operation makes it an excellent way to introduce Rmpi. We will take a
pipelined approach.

194 CHAPTER 8. MESSAGE PASSING

8.5.1 Algorithm

Our function primepipe, to be shown shortly, has three arguments:

• n: the function returns the vector of all primes between 2 and n,
inclusive

• divisors: the function checks each potential prime for divisibility by
the numbers in this vector

• msgsize: the size of messages from the manager to the first worker

Here are the details:

This is the classical Sieve of Eratosthenes. We make a list of the numbers
from 2 to n, then “cross out” all multiples of 2, then all multiples of 3, then
all multiples of 5, and so on. After the crossing-out by 2s, 3s and 5s, for
instance, our list 2,3,4,5,6,7,8,9,10,11,12 will now be

2 3 4 5 6 7 8 9 10 11 12 ...

In the end, the numbers that haven’t gotten crossed out are the primes.

It’s very much like a factory assembly line. The first station on the line
crosses out by 2s, the next station crosses out by 3s in whatever remains in
the first station’s output, etc. So a good name for this kind of algorithm
would be an assembly line, but it is traditional to call it a pipeline.

The vector divisors “primes the pump,” as it were. We find a small set of
primes using nonparallel means, and then use those in the larger parallel
problem. But what range do we need for them? Reason as follows.

If a number i has a divisor k larger than
√
n, it must then have one (specif-

ically, the number i/k) smaller than that value. Thus in crossing out all
multiples of k, we need only consider values of k up to

√
n. So, in order

to achieve our goal of finding all the primes up through n, we take our
divisors vector to be all the primes up through

√
n.

The function serprime() in the code to be presented in Section 8.5.2 will
do that. For example, say n is 1000. Then we first find all the primes less
than or equal to

√
1000, using our nonparallel function, and use the result

of that as input to the pipelined function, primepipe(), to find all the
primes through 1000.

8.5. EXAMPLE: FINDING PRIMES 195

To do all this, I first got Rmpi running as in Section 8.4.1, and placed the
code in Section 8.5.2 in a file PrimePipe.R. I then ran as follows:

> source("PrimePipe.R")

> dvs <- serprime(ceiling(sqrt(1000)))

> dvs

[1] 2 3 5 7 11 13 17 19 23 29 31

> primepipe(1000,dvs,100)

[1] 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61

[19] 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151

[37] 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251

[55] 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359

[73] 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463

[91] 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593

[109] 599 601 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691 701

[127] 709 719 727 733 739 743 751 757 761 769 773 787 797 809 811 821 823 827

[145] 829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 941 947 953

[163] 967 971 977 983 991 997

Now, to understand the argument msgsize, consider the case n = 1000
above. Each worker will be responsible for its particular chunk of divisors.
If we have two workers, then Process 0 (the manager) will “cross out”
multiples of 2; Process 1 (the first worker) will handle multiples of 3, 5, 7,
11 and 13; Process 2 will handle k = 17, 19, 23, 29 and 31. So, Process
0 will cross out the multiples of 2, and send the remaining numbers, the
odds, to Process 1. The latter will eliminate the multiples of 3, 5, 7, 11 and
13, and pass what is left to Process 2. What emerges from the latter is our
final result, which Process 2 returns to Process 0.

The argument msgsize specifies the size of chunks of odds that process 0
sends to process 1. More on this point later.

8.5.2 The Code

Rmpi code to f i n d prime numbers

f o r i l l u s t r a t i o n purposes , not in tended to be
optimal , e . g . needs b e t t e r load b a l a n c i n g

r e t u r n s v e c t o r o f a l l primes in 2 . . n ; the v e c t o r
” d i v i s o r s ” i s used as a b a s i s f o r a S ieve o f
Erathos thenes ope ra t i on ; must have n <=
(max(d i v i s o r s)ˆ2) and n even ; ” d i v i s o r s ” cou ld
f i r s t be found , f o r ins tance , by a p p l y i n g a s e r i a l
prime−f i n d i n g method on 2 . . s q r t (n) , say

196 CHAPTER 8. MESSAGE PASSING

with serprime () be low

the argument ” msgs ize ” c o n t r o l s the chunk s i z e in
communication from the manager to the f i r s t worker ,
node 1

manager code
primepipe <− function (n , d i v i s o r s , msgs ize) {

s upp ly the workers wi th the f u n c t i o n s they need
mpi . bcast . Robj2s lave (dowork)
mpi . bcast . Robj2s lave (dos i eve)
s t a r t workers , i n s t r u c t i n g them to each
run dowork () ;
note nonb lock ing c a l l
mpi . bcast . cmd(dowork , n , d i v i s o r s , msgs ize)
remove the evens r i g h t away
odds <− seq (from=3, to=n ,by=2)
nodd <− length (odds)
send odds to node 1 , in chunks
startmsg <− seq (from=1, to=nodd ,by=msgs ize)
for (s in startmsg) {

rng <− s :min(s+msgsize −1,nodd)
only one message type , 0
mpi . send . Robj (odds [rng] , tag =0, des t =1)

}
send end−data s e n t i n e l , chosen to be NA
mpi . send . Robj (NA, tag =0, des t =1)
wait f o r and r e c e i v e r e s u l t s from l a s t node ,
and re turn the r e s u l t ;
don ’ t f o r g e t the 2 , the f i r s t prime
ID of l a s t p roce s s
l a s tnode <− mpi .comm. s i z e ()−1
c (2 , mpi . recv . Robj (tag =0,source=las tnode))

}

worker code
dowork <− function (n , d i v i s o r s , msgs ize) {

me <− mpi .comm. rank ()
which chunk o f ” d i v i s o r s ” i s mine?
l a s tnode <− mpi .comm. s i z e ()−1
ld <− length (d i v i s o r s)
tmp <− f loor (ld / l a s tnode)
mystart <− (me−1) ∗ tmp + 1

8.5. EXAMPLE: FINDING PRIMES 197

myend <− mystart + tmp − 1
i f (me == las tnode) myend <− ld
mydivs <− d i v i s o r s [mystart : myend]
” out ” w i l l e v e n t u a l l y conta in the f i n a l r e s u l t s
i f (me == las tnode) out <− NULL

keep r e c e i v i n g a chunk from my p r e d e c e s s o r node ,
f i l t e r i n g i t accord ing to mydivs , sending what
s u r v i v e s to my s u c c e s s o r node
pred <− me − 1
succ <− me + 1
repeat {

msg <− mpi . recv . Robj (tag =0, source=pred)
anyth ing l e f t to pro ces s ?
i f (me < l a s tnode) {

i f (! i s . na(msg [1])) {
do the c r o s s o u t s f o r my range
of d i v i s o r s
s i e v e o u t <− dos i eve (msg , mydivs)
send what remains to next node
mpi . send . Robj (s i eveout , tag =0, des t=succ)

} else {
no more coming , so r e l a y s e n t i n e l
mpi . send . Robj (NA, tag =0, des t=succ)
return ()

}
} else { # I am the l a s t node

i f (! i s . na(msg [1])) {
s i e v e o u t <− dos i eve (msg , mydivs)
out <− c (out , s i e v e o u t)

} else {
no more coming , so send r e s u l t s
to manager
mpi . send . Robj (out , tag =0, des t =0)
return ()

}
}

}
}

check d i v i s i b i l i t y o f x by d i v s
dos i eve <− function (x , d iv s) {

for (d in d iv s) {
x <− x [x %% d != 0 | x == d]

198 CHAPTER 8. MESSAGE PASSING

}
x

}

s e r i a l prime f i n d e r ; can be used to genera te
d i v i s o r l i s t
serpr ime <− function (n) {

nums <− 1 : n
a l l in nums assumed prime u n t i l shown o t h e r w i s e
prime <− rep (1 , n)
maxdiv <− cei l ing (sqrt (n))
for (d in 2 : maxdiv) {

don ’ t b o t h e r d i v i d i n g by nonprimes
i f (prime [d])

t r y d i v i s o r d on numbers not y e t
found nonprime
prime [prime !=0 & nums > d & nums %% d == 0]

<− 0
}
nums [prime != 0 & nums >= 2]

}

8.5.3 Timing Example

Let’s try the case n = 10000000. The serial code took time 424.592 seconds.

Let’s try it in parallel on a network of PCs, for first two, then three and
then four workers. with various values for msgsize. The results are shown
in Table 8.1.

The parallel version was indeed faster than the serial one. This was partly
due to parallelism and partly to the fact that the parallel version is more
efficient, since the serial algorithm does more total crossouts. A fairer
comparison might be a recursive version of serprime(), which would reduce
the number of crossouts. But there are other important facets of the timing
numbers.

First, as expected, using more workers produced more speed, at least in
the range tried here. Note, though, that the speedup was not linear. The
best time for three workers was only 30% better than that for two workers,
compared to a “perfect” speedup of 50%. Using four workers instead of
two yields only a 53% gain. Second, we see that msgsize is an important
factor, explained in the next section.

8.5. EXAMPLE: FINDING PRIMES 199

msgsize 2 workers 3 workers 4 workers
1000 59.487 58.175 47.248
5000 22.855 17.541 15.454

10000 19.230 14.734 12.522
15000 19.198 14.874 12.689
25000 22.516 18.057 15.591
50000 23.029 18.573 16.114

Table 8.1: Timings, Prime Number Finding

8.5.4 Latency, Bandwdith and Parallelism

Another salient aspect here is that msgsize matters. Recall Section 2.5,
especially Equation (2.1). Let’s see how they affect things here.

In our timings above, setting the msgsize parameter to the lower value,
1000, results in having more chunks, thus more times that we incur the net-
work latency. On the other hand, a value of 50000 yields less parallelism—
there would be no parallelism at all with a chunk size of 10000000/2—and
thus impedes are ability to engage in latency hiding (Section 2.5), in which
we try to overlap computation and communication; this reduces speed.

8.5.5 Possible Improvements

There are a number of ways in which the code could be improved algo-
rithmically. Notably, we have a serious load balance problem (Section 2.1).
Here’s why:

Suppose for simplicity that each process handles only one element of divi-
sors. Process 0 then first removes all multiples of 2, leaving n/2 numbers.
Process 1 then removes all multiples of 3 from the latter, leaving n/3 num-
bers. It can be seen from this that Process 2 has much less work to do that
Process 1, and Process 3 has a much lighter load than process 2, etc.

One possible solution might be to have the code do its partitioning of the
vector divisors in an uneven way, assigning larger chunks of the vector to
the later processes.

Note that the code sends data messages via the functions mpi.send.Robj()

200 CHAPTER 8. MESSAGE PASSING

and mpi.recv.Robj(), rather than mpi.send() and mpi.recv(). The
latter two would be more efficient, as the former two perform serialize/un-
serialize operations (Section 2.10), thus slowing things down, and are also
slower in terms of memory allocation (Section 8.6). Nevertheless, Rmpi
is such a rich, complex package that it is best to introduce it in a simple
manner, hence our use of the somewhat slower functions.

8.5.6 Analysis of the Code

So, let’s look at the code. First, a bit of housekeeping. Just as with snow,
we need to send the workers the functions they’ll use:

mpi . bcast . Robj2s lave (dowork)
mpi . bcast . Robj2s lave (dos i eve)

“Robj” of course stands for “R object,” so we can send anything, in this
case sending functions. This is an illustration of a nice feature of Rmpi
over MPI.

Next, we get the ball rolling, by having the manager send data to the first
worker:

odds <− seq (from=3, to=n ,by=2)
nodd <− length (odds)
startmsg <− seq (from=1, to=nodd ,by=msgs ize)
for (s in startmsg) {

rng <− s :min(s+msgsize −1,nodd)
mpi . send . Robj (odds [rng] , tag =0, des t =1)

}
mpi . send . Robj (NA, tag =0, des t =1)

Remember, our prime finding algorithm consists of first eliminating mul-
tiples of 2, then of 3 and so on. Here the manager takes that first step,
eliminating the even numbers.

Note the fact that the for loop implements our plan for the manager to
send out the odd numbers in chunks, rather than all at once. This is crucial
to parallelization. If we don’t use the advanced (and difficult) technique of
nonblocking I/O (Section 8.7.1), then sending out the entire vector odds,
and acting similarly at the workers, would give us no parallelism at all; we
would have only one worker doing “crossing out” at a time. By sending
data in chunks, we can keep everyone busy at once, as soon as the pipeline
fills.

8.5. EXAMPLE: FINDING PRIMES 201

As noted earlier, the parameter msgsize controls the tradeoff between the
computation/communication overlap, and the overhead of launching a mes-
sage. A larger value means fewer times we pay the latency price, but less
parallelism.

Note that each worker needs to know when there will be no further input
from its predecessor. Sending an NA value serves that purpose.

In the call to mpi.send.Robj() above,

mpi . send . Robj (odds [rng] , tag =0, des t =1)

the argument tag=0 means we are considering this message to be of type
0. Message types are programmer-defined, and we only have one kind of
message here. But in some applications we might define several different
types. Even in our code here, we could define a second type, to denote a
“no more data” condition, instead of signifying the condition by sending an
NA value, as we do here. MPI gives the receiver the ability to receive the
next message of a specified type, or to receive any message without regard
to type and then ask MPI what type it is. Here we could have defined type
1 to mean “no more data,” and after executing a receive, we would check
for type 1.

The argument dest=1 means, “send this message to Process 1,” i.e., the
first worker. Since MPI numbers processes starting from 0 rather than 1,
Rmpi does the same, with the manager being Process 0.

Next the manager starts up the workers. Technically, they have already
been running. For example, we may have made an earlier call to the Rmpi
function mpi.spawn.Rslaves(). But they are not doing any useful work
yet. Each worker, upon startup, enters a loop in which it repeatedly ex-
ecutes mpi.bcast.cmd(), with “bcast” standing for “broadcast.” There
are some subtle issues here.

The name of the function mpi.bcast.cmd() is a little confusing, because
it sounds like all the processes are broadcasting, but it means they are
all participating in a broadcast operation. Here the manager is doing the
broadcast, and the workers are receiving that broadcast.

So, consider what happens when the manager executes

mpi . bcast . cmd(dowork , n , d i v i s o r s , msgs ize)

As noted, each worker had executed a call to mpi.bcast.cmd(), which
was hanging, waiting for the manager to make such a call. When the
manager does so in the above code, each worker’s call to mpi.bcast.cmd()

202 CHAPTER 8. MESSAGE PASSING

will complete, by executing the request from the manager, in this case a
command to run the dowork() function.

The command broadcast by the manager here tells the workers to execute
dowork(n,divisors,msgsize). They will thus now be doing useful work,
in the sense that they are now running the application, though they still
must wait to receive their data.

Eventually the last worker will send the final list of primes back to the
manager, which will receive it, and return the result to the caller:

l a s tnode <− mpi .comm. s i z e ()−1
c (2 , mpi . recv . Robj (tag =0,source=las tnode))

Note that since the manager had removed the multiples of 2 originally, the
number 2 won’t be in what is received here. Yet of course 2 is indeed a
prime, so we need to add it to the list.

The function mpi.comm.size() returns the communicator size, the total
number of processes, including the manager. Recalling that the latter is
Process 0, we see that the last worker’s process number will be the com-
municator size minus 1. In more advanced MPI applications, we can set
up several communicators, i.e., several groups of processes, rather than just
one, our case here. A broadcast then means transmitting a message to all
processes in that communicator.

So, what about dowork(), the function executed by the workers? First,
note that worker i must receive data from worker i-1 and send data to
worker i+1. Thus the worker needs to know its process ID number, or rank
in MPI parlance:

me <− mpi .comm. rank ()

Now the worker must decide which of the divisors it will be responsible for.
This will be a standard chunking operation:

ld <− length (d i v i s o r s)
tmp <− f loor (ld / l a s tnode)
mystart <− (me−1) ∗ tmp + 1
myend <− mystart + tmp − 1
i f (me == las tnode) myend <− ld
mydivs <− d i v i s o r s [mystart : myend]

An alternative would have been to use mpi.scatter(), distributing the
vector divisors via a scatter operation. Since the divisors vector will be

8.6. MEMORY ALLOCATION ISSUES 203

short, this approach wouldn’t give us a performance boost, but it would
make the code a bit more elegant.

The heart of dowork() is a large repeat loop, in which the worker repeat-
edly receives data from its predecessor,

msg <− mpi . recv . Robj (tag =0,source=pred)

does the necessary “crossing out,”

s i e v e o u t <− dos i eve (msg , mydivs)

and sends the result to its successor worker,

mpi . send . Robj (s i eveout , tag =0, des t=succ)

In the case of the final worker, it accumulates its “crossing out” results in
a vector out,

s i e v e o u t <− dos i eve (msg , mydivs)
out <− c (out , s i e v e o u t)

which it sends to the manager, Process 0, at the end:

mpi . send . Robj (out , tag =0, des t =0)

The “crossing out” function, dosieve() is straightforward, but note that
we do try to make good use of vectorization:

x <− x [x %% d != 0 | x == d]

8.6 Memory Allocation Issues

Memory allocation is a major issue, both in this application and many
others, thus worth spending some extra time on here. The problem is that
when a message arrives at a process, Rmpi needs to have a place to put it.

Recall that although our prime-finding code above called mpi.recv.Robj(),
receiving a general R object, the more basic receive operation is mpi.recv().
If we call the latter, we must set up a buffer for it, e.g. b in

b <- double(100000)

b <- mpi.recv(x=b,type=2,source=5)

204 CHAPTER 8. MESSAGE PASSING

If the receive call is within a loop, the overhead of repeatedly setting up
buffer space may be substantial. This of course would be remedied by
moving the statement

b <− double (100000)

to a position preceding the loop.4

With mpi.recv.Robj(), this memory allocation overhead occurs “invisi-
bly.” If the function is called from within a loop, there is potentially a
reallocation at every iteration. So, while this type of receive call is more
convenient, you should not be fooled into thinking there are no memory
issues. Thus we may attain better efficiency from mpi.recv() than from
mpi.recv.Robj(). As mentioned, the latter also suffers some slowdown
from serialization.

On the other hand, if we use mpi.recv() and set the memory allocation
before the loop, we must allocate enough memory for the largest message
that might be received. This may be wasteful of memory, and if memory
space is an issue, this is a problem that must be considered.

8.7 Message-Passing Performance Subtleties

In message-passing systems, even innocuous-looking operations can have
lots of important subtleties. This section will present an overview.

8.7.1 Blocking vs. Nonblocking I/O

The call

mpi . send (x , type =2, tag =0, des t =8)

sends the data in x. But when does the call return? The answer depends on
the underlying MPI implementation. In some implementations, probably
most, the call returns as soon as the space x is reusable, as follows. Rmpi
will call MPI, which in turn will call network-send functions in the operating
system. That last step will involve copying the contents of x from one’s R

4Even this may not be enough. R has a copy on write policy, meaning that if a vector
element is changed, the memory for the vector may be reallocated. The word “may” is
key here, and recent versions of R attempt to reduce the number of reallocations, but
there is never any guarantee on this.

8.7. MESSAGE-PASSING PERFORMANCE SUBTLETIES 205

program to space in the OS, after which x is reusable. The point is that
the call could return long before the data reaches the receiver.

Other implementations of MPI, though, wait until the destination process,
number 8 in the example above, has received the transmitted data. The
call to mpi.send() at the source process won’t return until this happens.

Due to network delays, there could be a large performance difference be-
tween the two MPI implementations. There are also possible implications
for deadlock (Section 8.7.2).

In fact, even with the first kind of implementation, there may be some delay.
For such reasons, MPI offers nonblocking send and receive functions, for
which Rmpi provides the interfaces such as mpi.isend() and mpi.irecv().
This way you can have your code get a send or receive started, do some
other useful work, and then later check back to see if the action has been
completed, using a function such as mpi.test().

8.7.2 The Dreaded Deadlock Problem

Consider code in which Processes 3 and 8 trade data:

me <− mpi .comm. rank ()
i f (me == 3) {

mpi . send (x , type =2, tag =0, des t =8)
mpi . recv (y , type =2, tag =0,source=8)

} else i f (me == 8){
mpi . send (x , type =2, tag =0, des t =3)
mpi . recv (y , type =2, tag =0,source=3)

}

If the MPI implementation has send operations block until the matching
receive is posted, then this would create a deadlock problem, meaning that
two processes are stuck, waiting for each other. Here Process 3 would start
the send, but then wait for an acknowledgment from 8, while 8 would do
the same and wait for 3. They would wait forever.

This arises in various other ways as well. Suppose we have the manager
launch the workers via the call

mpi . bcast . cmd(dowork , n , d i v i s o r s , msgs ize)

This sends the command to the workers, then immediately returns. By
contrast,

206 CHAPTER 8. MESSAGE PASSING

r e s <− mpi . remote . exec (dowork , n , d i v i s o r s , msgs ize)

would make the same call at the workers, but would wait until the workers
were done with their work before returning (and then assigning the results
to res). Now suppose the function dowork() does a receive from the man-
ager, and suppose we use that second call above, with mpi.remote.exec(),
after which the manager does a send operation, intended to be paired with
the receive ops at the workers. In this setting, we would have deadlock.

Deadlock can arise in shared-memory programming as well (Chapter 4),
but the message-passing paradigm is especially susceptible to it. One must
constantly beware of the possibility when writing message-passing code.

So, what are the solutions? In the example involving Processes 3 and 8
above, one could simply switch the ordering:

me <− mpi .comm. rank ()
i f (me == 3) {

mpi . send (x , type =2, tag =0, des t =8)
mpi . recv (y , type =2, tag =0,source=8)

} else i f (me == 8){
mpi . recv (y , type =2, tag =0,source=3)
mpi . send (x , type =2, tag =0, des t =3)

}

MPI also has a combined send-receive operation, interfaced to from Rmpi
via mpi.sendrecv().

Another way out of deadlock is to use the nonblocking sends and/or re-
ceives, at the cost of additional code complexity.

Chapter 9

MapReduce Computation

As the world emerged into an era of Big Data, demand grew for a comput-
ing paradigm that (a) is generally applicable and (b) works on distributed
data. The latter term means that data is physically distributed over many
chunks, possibly on different disks and maybe even different geographical
locations. Having the data stored in a distributed manner facilitates paral-
lel computation — different chunks can be read simultaneously — and also
enables us to work with data sets that are too large to fit into the memory
of a single machine. Demand for such computational capability led to the
development of various systems using the MapReduce paradigm.

MapReduce is really a form of the scatter-gather pattern we’ve seen fre-
quently in this book, with the added feature of a sorting operation added in
the middle. In rough form, it works like this. The input is in a (distributed)
file, fed into the following process:

• Map phase: There are various parallel processes known as mappers,
all running the same code. For each line of the input file, the mapper
handling that chunk of the file reads the line, processes it in some
way, and then emits an output line, consisting of a key-value pair.

• Shuffle/sort phase: All the mapper output lines that share the
same key are gathered together.

• Reduce phase: There are various parallel processes known as re-
ducers, all running the same code. Each reducer will work on its own
set of keys, i.e., for any given key, all mapper output lines having the
same key will go to the same reducer. Moreover, the lines fed into
any given reducer will be sorted by key.

207

208 CHAPTER 9. MAPREDUCE

9.1 Apache Hadoop

At this writing, the most popular MapReduce software package is Hadoop.
It is written in Java, and is most efficiently used in that language (or C++),
but it includes a streaming feature that enables one to use Hadoop from es-
sentially any language, including R. Hadoop includes its own distributed file
system, unsurprisingly called the Hadoop Distributed File System (HDFS).
Note that one advantage of HDFS is that it is replicated, thus achieving
some degree of fault tolerance.

9.1.1 Hadoop Streaming

As noted, Hadoop is really written for Java or C++ applications. However,
Hadoop can work with programs in any language under Hadoop’s streaming
option, by reading from STDIN and writing to STDOUT, in text, line-
oriented form in both cases.

Input to the mappers is from an HDFS file, and output from the reducers
is again to an HDFS file, one chunk per reducer. The file line format is

key \t data

where \t is the Tab character.

The usage of text format does cause some slowdown in numeric programs,
for the conversion of strings to numbers and vice versa, but again, Hadoop
is not designed for maximum efficiency.

9.1.2 Example: Word Count

The typical “Hello World,” introductory example is word count for a text
file. The mapper program breaks a line into words, and emits (key,value)
pairs in the form of (word,1). (If a word appears several times in a line,
there would be several pairs emitted for that word.) In the Reduce stage,
all those 1s for a given word are summed, giving a frequency count for that
word. In this way, we get counts for all words.

Here is the mapper code:

9.1. APACHE HADOOP 209

#! /usr/b in/env R s c r i p t

wordmapper .R

s i <− f i l e (” s td in ” , open=” r ”)
while (length (i n l n <−

scan (s i , what=”” , n l i n e s =1, qu i e t=TRUE,
blank . l ines . sk ip=FALSE))) {

for (w in i n l n) cat (w, ”\ t 1\n”)
}

And here is the reducer:

#! /usr/b in/env R s c r i p t

wordreducer .R

s i <− f i l e (” s td in ” , open=” r ”)
oldword <− ””

while (length (i n l n <− scan (s i , what=”” , n l i n e s =1,
qu i e t=TRUE))) {

word <− i n l n [1]
i f (word != oldword) {

i f (oldword != ””)
cat (oldword , ”\ t ” ,count , ”\n”)

oldword <− word
count <− 1

} else {
count <− count + as . integer (i n l n [2])

}
}

The above code is not very refined, for instance treating The as different
from the. The main point, though, is just to illustrate the principles.

9.1.3 Running the Code

I ran the following code from the top level of the Hadoop directory tree,
with obvious modifications possible for other run points. First, I needed to

210 CHAPTER 9. MAPREDUCE

place my data file, rnyt,1

$ bin/hadoop f s −put . . / rnyt rnyt
$ bin/hadoop j a r contrib/ streaming/∗ . j a r \

−input rnyt \
−output wordcountsnyt \
−mapper . . /wordmapper .R
−reducer . . /wordreducer .R

That first command specifies that it will be for the file system (fs), and
that I am placing a file in that system. My ordinary version of the file was
in my home directory.

Hadoop, being Java-based, runs Java archive, .jar files. So, the second
command above specifies that I want to run in streaming mode. It also
states that I want the output to go to a file wordcountsnyt in my HDFS
system. Finally, I specify my mapper and reducer code files in my HDFS
system, after which I ran the program. I allowed Hadoop to use its default
values for the number of mappers and reducers, and could have specified
them above if desired.

Recall that the final output comes in chunks in the HDFS. Here’s how to
check (some material not shown), and to view the actual file contents:

$ bin/hadoop f s −l s wordcountsnyt

Found 3 items
−rw−r−−r−− 1 . . . /user/mat l o f f/wordcountsnyt/ SUCCESS
drwxr−xr−x − . . . /user/mat l o f f/wordcountsnyt/ l o g s
−rw−r−−r−− 1 . . . /user/mat l o f f/wordcountsnyt/part −00000
$ bin/hadoop f s −cat wordcountsnyt1/part −00000
1 NA
$2 1
1 ,600 1
18 th 1
1991 , 1
1996 , 1
2009 1
2009 , 1
250 ,000 1
6 , 1
7 , 1

1The file was the contents of the article “Data Analysts Captivated by Rs Power,”
New York Times, January 6, 2009.

9.1. APACHE HADOOP 211

A 1
ASHLEE 1
According 1
America , 1
Analysts 2
Anne 1
Another 1
Apache , 1
Are 1
At 1
. . .

So, in HDFS, one distributed file is stored as a directory, with the chunks
in part-00000, part-00001 and so on. We only had enough data to fill
one chunk here.

9.1.4 Analysis of the Code

The first thing to notice is that these two R files are not executed directly
by R, but instead under Rscript. This is standard for running R in batch,
i.e., noninteractive, mode.

Next, as noted earlier, input to the mappers is from STDIN, in this case
from the redirected file rnyt in my HDFS, seen here in the identifier si in
the mapper. Final output is to STDOUT, redirected to the specified HDFS
file, hence the call to cat() in the reducer. The mapper output goes to the
shuffle and then to the reducers, again using STDOUT, visible here in the
call to cat() in the mapper code.

The reader might be wondering here about the line

count <− count + as . integer (i n l n [2])

in the reducer. The way things have been described so far, it would seem
that the expression as.integer(inln[2]) — a word count output from a
mapper — should always be 1. However, there is more to the story, as
Hadoop also allows one to specify combiner code, as follows.

Remember, all the communication, e.g. from the mappers to the shuffler,
is via our network, with one (key,value) pair per network message. So,
we may have an enormous number of short messages, thus incurring the
network latency penalty many times, as well as huge network congestion
due to, for instance, many mappers trying to use the network at once. The

212 CHAPTER 9. MAPREDUCE

solution is to have each mapper try to coalesce its messages before sending
to the shuffler.

The coalescing is done by a combiner specified by the user. Often the
combiner will be the same as the reducer. So, what occurs is that each
mapper will run the reducer on its own mapper output, then send the
combiner output to the shuffler, after which it goes to the reducers as
usual.

Thus in our word count example here, when a line arrives at a reducer, its
count field may already have a value greater than 1. The combiner code,
by the way, is specified via the -combiner field in the run command, like
-mapper and -reducer.

9.1.5 Role of Disk Files

As noted, Hadoop has its own file system, HDFS, which is built on top of
the native OS’ file system of the machines. It is replicated for the sake of
reliability, with each HDFS block existing in at least 3 copies, i.e., on at
least 3 separate disks. Very large files are possible, in some cases spanning
more than one disk/machine.

Disk files play a major role in Hadoop programs:

• Input is from a file in the HDFS system.

• The output of the mappers goes to temporary files in the native OS’
file system.

• Final output is to a file in the HDFS system. As noted earlier, that
file may be distributed across several disks/machines.

Note that by having the input and output files in HDFS, we minimize com-
munications costs in shipping the data between nodes of a cluster. The
slogan used is “Moving computation is cheaper than moving data.” How-
ever, all that disk activity can be quite costly in terms of run time.

9.2 Other MapReduce Systems

As of late 2014, there has been increasing concern regarding Hadoop’s per-
formance. One of the problems is that one cannot keep intermediate results

9.3. R INTERFACES TO MAPREDUCE SYSTEMS 213

in memory between Hadoop runs. This is a serious problem, for instance,
with iterative or even multi-pass algorithms.

The Spark package now being developed aims to remedy many of Hadoop’s
shortcomings. Early reports indicate some drastic speed improvements,
while retaining the ability to read HDFS files, and continuing to have fault
tolerance features.

9.3 R Interfaces to MapReduce Systems

Given the widespread usage of Hadoop, a number of R interfaces have been
developed. The most popular is probably rmr, developed by Revolution
Analytics, and RHIPE, written by Saptarshi Guha as part of his PhD
dissertation. An R interface package, sparkr, is available.

9.4 An Alternative: “Snowdoop”

So, what does Hadoop really give us? The two main features are (a) dis-
tributed data access and (b) an efficient distributed file sort. Hadoop works
well for many applications, but a realization developed that Hadoop can be
very slow, and very limited in available data operations.

Both of those shortcomings are addressed to a large extent by the new
kid on the block, Spark. Spark is apparently much faster than Hadoop,
sometimes dramatically so, due to strong caching ability and a wider variety
of available operations. Recently distributedR has also been released,
again with the goal of using R on voluminous data sets, and there is also
the more established pbdR.

But even Spark suffers a very practical problem, shared by the others men-
tioned above. All of these systems are complicated. There is a considerable
amount of configuration to do, worsened by dependence on infrastructure
software such as Java or MPI, and in some cases by interface software such
as rJava. Some of this requires systems knowledge that many R users may
lack. And once they do get these systems set up, they may be required
to design algorithms with world views quite different from R, even though
they are coding in R.

So, do we really need all that complicated machinery? Hadoop and Spark
provide efficient distributed sort operations, but if one’s application does
not depend on sorting, we have a cost-benefit issue here.

214 CHAPTER 9. MAPREDUCE

Here is an alternative, which I call “Snowdoop”: One simply does one’s
own chunking of files into distributed mini-files, and then uses Snow or
some other general R tool on those files.

9.4.1 Example: Snowdoop Word Count

Let’s use as our example word count, the “Hello World” of MapReduce.
As noted earlier, word count determines which words are in a text file, and
calculates frequency counts for each distinct word:

each node e x e c u t e s t h i s f u n c t i o n
wordcensus <− function (basename , nd igs) {

fname <− f i lechunkname (basename , nd igs)
words <− scan (fname , what=””)
tapply (words , words , length , s i m p l i f y=FALSE)

}

manager
fu l lwordcount <− function (c l s , basename , nd igs) {

s e t c l s i n f o (c l s) # g i v e workers ID numbers , e t c .
counts <−

c l u s t e r C a l l (c l s , wordcensus , basename , nd igs)
add l i s t s sum <− function (l s t 1 , l s t 2)

a d d l i s t s (l s t 1 , l s t 2 ,sum)
Reduce (addl i stssum , counts)

}

The above code makes use of the following routines, which are general and
are used in many “Snowdoop” applications. These and other Snowdoop
utilities are included in my partools package (Section 3.5). Here are the
call forms:

g i v e each c l u s t e r node an ID , in a g l o b a l
p a r t o o l s e n v $myid ; number o f workers in
p a r t o o l s e n v $ n c l s ; a t each worker ,
load p a r t o o l s and s e t the R search path to
t h a t o f the manager
s e t c l s i n f o (c l s)

”add” R l i s t s l s t 1 , l s t 2 , a p p l y i n g the o pera t ion
’ add ’ to e lements in common, copying non−n u l l o t h e r s
a d d l i s t s (l s t 1 , l s t 2 , add)

9.4. AN ALTERNATIVE: “SNOWDOOP” 215

form the f i l e name basename . i , where i i s the ID
of t h i s node u n l e s s nodenum i s s p e c i f i e d
f i lechunkname (basename , ndigs , nodenum=NULL)

All pure R! No Java, no configuration. Indeed, it’s worthwhile comparing
to the word count example in the sparkr distribution. There we see calls
to sparkr functions such as flatMap(), reduceByKey() and collect().
But the reduceByKey() function is pretty much the same as R’s tried
and true tapply(). The collect() function is more or less our Snowdoop
library function addlists(). So, again, there is no need to resort to Spark,
Hadoop, Java and so on; we just use ordinary R.

We are achieving the parallel-read advantage of Hadoop and Spark,2 while
avoiding the Hadoop/Spark configuration headaches and while staying with
the familiar R programming paradigm. In many cases, this should be a
highly beneficial tradeoff for us.

Of course, this approach lacks the fault tolerance feature of Hadhoop and
Spark can, which can be quite advantageous. And as of this writing, it is
not yet clear how well this scales, e.g. how well the parallel package works
with very large numbers of nodes. But Snowdoop is an attractive approach
for many applications.

9.4.2 Example: Snowdoop k-Means Clustering

Let’s look again at the k-means clustering example of Section 4.9.

k−means c l u s t e r i n g , us ing Snowdoop

arguments :
#
xname : name o f chunked data (t y p i c a l read in
e a r l i e r from chunked f i l e
n i t r s : number o f i t e r a t i o n s to perform
n c l u s : number o f c l u s t e r s to form
c t r s : the matrix o f i n i t i a l c e n t r o i d s

assumes :
#
s e t c l s i n f o a l r e a d y c a l l e d
a c l u s t e r w i l l never become empty

2Note that neither Hadoop, Spark nor Snowdoop will achieve full parallel reading if
the file chunks are all on the same disk.

216 CHAPTER 9. MAPREDUCE

kmeans <− function (c l s , xname , n i t r s , c t r s) {
add l i s t s sum <−

function (l s t 1 , l s t 2) a d d l i s t s (l s t 1 , l s t 2 ,sum)
for (i in 1 : n i t r s) {

f o r each data point , f i n d the n e a r e s t centro id ,
and t a b u l a t e ; a t each worker and f o r each
centro id , we compute a v e c t o r whose f i r s t
component i s the count o f the number o f
data p o i n t s whose n e a r e s t c e n t r o i d i s t h a t
centro id , and whose remainining p o r t i o n
i s the sum o f a l l such data p o i n t s
tmp <− c l u s t e r C a l l (c l s , f i ndnr s t , xname , c t r s)
sum over a l l workers
tmp <− Reduce (addl i stssum , tmp)
compute new c e n t r o i d s
for (i in 1 :nrow(c t r s)) {

tmp1 <− tmp [[as . character (i)]]
c t r s [i ,] <− (1/tmp1 [1]) ∗ tmp1[−1]

}
}
c t r s

}

f i n d n r s t <− function (xname , c t r s) {
require (pd i s t)
x <− get (xname)
ds t s <− matrix (pd i s t (x , c t r s) @dist , ncol=nrow(x))
d s t s [, i] now has the d i s t a n c e s from row i o f x
to the c e n t r o i d s
nr s t <− apply (dsts , 2 , which .min)
n r s t [i] t e l l s us the index o f the c e n t r o i d
c l o s e s t to row i o f x
mysum <− function (idxs , myx)

c (length (idxs) , colSums (x [idxs , , drop=F]))
tmp <− tapply (1 :nrow(x) , nrst , mysum, x)

}

t e s t <− function (c l s) {
m <− matrix (c (4 , 1 , 4 , 6 , 3 , 2 , 6 , 6) , ncol=2)
formrowchunks (c l s ,m, ”m”)
i n i t c <− rbind (c (2 , 2) , c (3 , 5))
kmeans (c l s , ”m” ,1 , i n i t c) }

9.4. AN ALTERNATIVE: “SNOWDOOP” 217

So again, we are using chunked files as in Hadoop, but writing ordinary R
code, e.g. tapply() and Reduce(). But most important, the data at each
worker persists across iterations. In Hadoop, it would be reread from disk
at each iteration, and in Spark, we’d need to request caching, but here it
comes for free, no special effort needed.

Chapter 10

Parallel Sorting and
Merging

One of the most common types of computation is sorting, the main subject
of this chapter. A related topic is merging, meaning to combine two sorted
vectors into one large sorted vector.

Sorting is not an embarrassingly parallel operation (Section 2.11). Accord-
ingly, many different types of parallel sorts have been invented. We’ll cover
some introductory material here.

10.1 The Elusive Goal of Optimality

There is a vast literature on sorting methods, including for parallel com-
puting. But the “best” one depends somewhat on the nature of the data,
thus on the nature of the application, and even more on the nature of the
computing platform. What works well on a multicore machine, for instance,
may do poorly on a GPU.

Entire books have been written on this topic. Here, though, we briefly
discuss some general approaches, and then note some excellent libraries to
draw upon. In particular, the Thrust and Rth libraries (Chapter 7) will
play a prominent role.

219

220 CHAPTER 10. SORTING

10.2 Sorting Algorithms

There is no such thing as a free lunch—famous term from economics

As mentioned, there is a tremendous variety of sorting algorithms. In this
section we’ll discuss a few common ones, to give the reader an idea of how
these work. Unfortunately, each of them has its set of drawbacks, especially
when implemented in parallel.

10.2.1 Compare-and-Exchange Operations

Many sorting algorithms make heavy use of compare-and-exchange opera-
tions. In the case of two numbers, x and y, this means

i f (x > y) then swap x and y

Due to overhead issues, such as a need to amortize network latency (Section
2.5) or to reduce cache coherency actions (Section 2.5.1.1), this is often done
in group form, i.e., the compare-and-swap operation works on two groups of
numbers. The definition of “<” in the group case differs from one algorithm
to another, as will be seen below.

10.2.2 Some “Representative” Sorting Algorithms

Each of these algorithms can be described simply, and outlines of them will
be shown here; details may be found on a myriad of websites, including
specific implementations in C or other languages.

Here we assume we have an R vector x of length n to be sorted. For
simplicity, assume the n values are distinct.

• The Much-Maligned Bubble Sort

This algorithm is widely taught as an example of what not to do. To
sort n numbers on a serial platform, it takes O(n2) time, compared
to the O(n log n) time for better algorithms. However, as we will see
shortly, in a parallel context the bubble sort can be useful.

The algorithm is quite simple. We start with x[1], performing a
compare-and-exchange operation with x[2]. We then do compare-
and-exchange between x[2] and x[3] (remember, x[2] may now be
the original x[1]), and keep going, finally performing compare-and-
exchange at x[n-1]. This will be a total of n-1 steps.

10.2. SORTING ALGORITHMS 221

We then go back to x[2], moving rightward through the whole vector
in the same manner. This will involve n-2 compare-and-exchange
operations. We then do this at x[3], with n-3 operations, and so on.

So, we have n-1 passes through the vector, with the number of compare-
and-exchange operations being

n− 1 + n− 2 + n− 3 + ...+ 1

which by a famous mathematical formula boils down to (n-1)n/2, i.e.,
O(n2).

A variant is Even/Odd Transposition Sort. In the first step, all el-
ements of x at even-numbered positions do compare-and-exchange
with their right-hand neighbors; for instance, x[8] will be compared-
and-exchanged with its right-hand neighbor x[9]. At the second step,
the operation is with the left-hand neighbors. In the third step, the
exchange is back to the right-hand direction, and so on.

This proceeds for approximately n steps, and again, at every step we
perform about n/2 comparisons. So, we have a time complexity of
O(n2), as with the Bubble Sort.

If we wish to chunk the data, we do compare-and-exchange using
neighboring chunks, defining that operation in various ways. For
example, one can have each thread in a pair send the other all its
data, and then have the lower-ID thread retain the lower half of the
result, while the other thread keeps the upper half.

The algorithm thus can easily be parallelized. In general it is not the
algorithm of choice, but on some special-purpose hardware forms it
can work very well.

• Quicksort

Start with x[1] as our pivot, i.e., our basis for comparison. Determine
which elements of x are less than x[1], and call them the “small
group.” Say there are k of them. The others, i.e., the ones larger
than x[1], form the “large group.” Write the small group back into
x, writing the first at element 1 and so on; write the original x[1] at
element k+1, and write the large group at elements k+2 through n.

Now apply the same manipulation twice, once to to the small group,
and once to the large group. In the former case, take the new x[1] as
the pivot, while in the latter case take the new x[k+2].

Keep going in this manner. Each time you form a group, split it
into its own small and large groups, and rearrange within those two
groups. In the end, the vector will be sorted in-place.

222 CHAPTER 10. SORTING

The following rough analysis shows the time complexity. We are
dividing the data in halves (albeit not exactly half), then in fourths,
then in eighths and so on. Eventually our groups are all of size 1,
so the process takes approximately log2 n steps. In each step, we
compare all elements to their current pivots, thus about n operations.
In other words, the time complexity is O(n log n).

Readers who are familiar with recursive programming will recognize
the algorithm here. An outline would be

qs <− function (x) {
i f (length (x) <= 1) return ()
find smal l group ‘
find l a r g e group
move smal l group to l e f t part o f x
move l a r g e group to r i g h t part o f x
move x [1] to p o s i t i o n k+1 with in x
x [smal l group] <− qs (x [smal l group])
x [l a r g e group] <− qs (x [l a r g e group])

}

The recursive nature of the algorithm is seen in the fact that the
function qs() calls itself! At first, that might seem like magic, but
it really makes sense when one thinks about the way this is handled
internally. Interested readers may wish to review from Section 4.1.2,
and ponder how recursion is implemented internally. Note that re-
cursion actually is not very efficient in R, though it can be used well
in C/C++. Full C code will be presented in Section 10.4.

Quicksort is optimal in principle, but even a serial implementation
must be done very carefully to achieve good efficinency. In parallel,
all the horrors discussed in Chapter 2—memory contention, cache
coherency, network overhead and so on—arise with a vengeance.

A variant, Hyperquicksort, was developed for hypercube network topolo-
gies, but is applicable generally, especially for distributed data. It is
discussed in Section 10.7.1.

• Mergesort

Say n is 100000 and we have four threads. We could assign x[1]
through x[250000] to the first thread, x[250001] through x[500000]
to the second thread, and so on. Each thread then does a local sort
of its chunk, and then all the sorted chunks are merged.

So far, this is embarrassingly parallel. But the merge phase isn’t.
The latter is typically done in a tree-like manner. In our four-thread

10.3. EXAMPLE: BUCKET SORT IN R 223

example above, say, we could have threads 1 and 2 merge their re-
spective chunks, giving the result to thread 1, and at the same time
have threads 3 and 4 do the same, giving this result to thread 3. Then
threads 1 and 3 would merge their new chunks, and the vector would
now be sorted.

In this manner, the merge phase would take O(log2 n) steps, since
at each step we are halving the number of active threads. At each
step, all n elements of the vector get touched in some way, so as
with Quicksort, the total time complexity is O(n log n). By the way,
Thrust does include a merge function, thrust::merge(x,y,z), that
merges sorted vectors x and y, and places the result in z.

The major drawback of mergesorts is that many threads become idle
at various points in the merge phase, thus robbing the process of
parallelism.

• Bucket Sort

This algorithm, sometimes called sample sort, is like a one-level Quick-
sort. Say we have three threads and 90000 numbers to sort. We could
first take a small subsample, say of size 1000, and then (if we are in
R) call quantile() to determine where the 0.33 and 0.67 quantiles
are, which I’ll call b and c. Thread 1 then handles all the numbers
less than b, thread 2 handles the ones between b and c, and thread
3 handles the ones bigger than c. Each sorts its own group locally,
then places the result back in the proper place in the vector. If for
instance, thread 1 has 29532 numbers to process, it places the result
of its sort in x[1] through x[29532], and so on.

10.3 Example: Bucket Sort in R

Before resorting to C/C++, let’s look at a pure R example. Here we imple-
ment Bucket Sort, using the multicore portion of the parallel package.

mc. cores i s the number o f cores to use in computation
mcbsort <− function (x , ncores , nsamp=1000) {

require (p a r a l l e l)
g e t subsample to determine approximate q u a n t i l e s
samp <−

sort (x [sample (1 : length (x) , nsamp , replace=TRUE)])
each thread w i l l run dowork ()
dowork <− function (me) {

which numbers w i l l t h i s thread pro cess ?

224 CHAPTER 10. SORTING

(cou ld a l s o use q u a n t i l e () here)
k <− f loor (nsamp / ncores)
i f (me > 1) mylo <− samp [(me−1) ∗ k + 1]
i f (me < ncores) myhi <− samp [me ∗ k]
i f (me == 1) myx <− x [x <= myhi] else

i f (me == ncores) myx <− x [x > mylo] else
myx <− x [x > mylo & x <= myhi]

t h i s thread now s o r t s i t s a s s i g n e d group
sort (myx)

}
r e s <− mclapply (1 : ncores , dowork ,mc . co r e s=ncores)
s t r i n g the r e s u l t s t o g e t h e r
c (unlist (r e s))

}

t e s t <− function (n , ncores) {
x <− runif (n)
mcbsort (x , ncores=ncores , nsamp=1000)

}

This is a straightforward implementation of Bucket Sort; see the comments
for details.

However, one should feel intuitively that this is not the best we can do.
We’ll do some timings shortly.

10.4 Example: Quicksort in OpenMP

// OpenMP example program :
// q u i c k s o r t ; not n e c e s s a r i l y e f f i c i e n t

// exchange the e lements pointed to by y i and yj
void swap (int ∗yi , int ∗yj)
{ int tmp = ∗y i ;

∗y i = ∗yj ;
∗yj = tmp ;

}

// con s id e r the s e c t i o n o f x from x [low] to x [high] ,
// comparing each element to the pivot , x [low] ; keep
// s h u f f l i n g t h i s s e c t i o n o f x unt i l , for some m,
// a l l the e lements to the l e f t o f x [m] are <= the ,

10.4. EXAMPLE: QUICKSORT IN OPENMP 225

// pivot , and a l l the ones to the r i g h t
// are >= the p ivot
int ∗ s epara te (int ∗x , int low , int high)
{ int i , p ivot ,m;

p ivot = x [low] ;
swap (x+low , x+high) ;
m = low ;
for (i = low ; i < high ; i++) {

i f (x [i] <= pivot) {
swap (x+m, x+i) ;
m += 1 ;

}
}
swap (x+m, x+high) ;
return m;

}

// q u i c k s o r t o f the array z , e lements z s t a r t through
// zend ; s e t the l a t t e r to 0 and n−1 in f i r s t c a l l ,
// where n i s the l ength o f z ; f i r s t c a l l i s 1 or 0 ,
// accord ing to whether t h i s i s the f i r s t o f the
// r e c u r s i v e c a l l s
void qs (int ∗z , int z s t a r t , int zend , int f i r s t c a l l)
{

#pragma omp p a r a l l e l
{ int part ;

i f (f i r s t c a l l == 1) {
#pragma omp s i n g l e nowait
qs (z , 0 , zend , 0) ;

} else {
i f (z s t a r t < zend) {

part = separa te (z , z s t a r t , zend) ;
#pragma omp task
qs (z , z s t a r t , part −1 ,0) ;
#pragma omp task
qs (z , part +1,zend , 0) ;

}

}
}

}

// t e s t code

226 CHAPTER 10. SORTING

main (int argc , char∗∗argv)
{ int i , n , ∗w;

n = a t o i (argv [1]) ;
w = malloc (n∗s izeof (int)) ;
for (i = 0 ; i < n ; i++) w[i] = rand () ;
qs (w, 0 , n−1 ,1) ;
i f (n < 25)

for (i = 0 ; i < n ; i++) p r i n t f (”%d\n” ,w[i]) ;
}

The code

i f (f i r s t c a l l == 1) {
#pragma omp s i n g l e nowait
qs (z , 0 , zend , 0) ;

gets things going. We want only one thread to execute the root of the
recursion tree, hence the need for the single clause. The other threads will
have nothing to do this round, but the root call sets up two new calls, each
of which will again encounter the omp parallel pragma and the code

part = separa te (z , z s t a r t , zend) ;
#pragma omp t a s k
qs (z , z s t a r t , part −1 ,0) ;

Here the task directive states, “OMP system, please make sure that this
subtree is handled by some thread eventually.” If there are idle threads
available, then this new task will be started immediately by one of them;
otherwise, it’s a promise to come back later.

Thus during execution, we first use one thread, then two, then three and so
on until all threads are busy. In other words, there will be something of a
load balance issue near the beginning of execution, just as we noted earlier
for Mergesort.

There are various possible refinements, such as the barrier-like taskwait
clause.

10.5 Sorting in Rth

Unfortunately, none of the algorithms above is embarrassingly parallel, and
most require considerable movement of data. This makes it difficult to code
them efficiently in pure R. Fortunately Thrust provides us with a C++
solution, to which the rthsort() in Rth provides a convenient interface.

10.5. SORTING IN RTH 227

And remember, the Bucket Sort above was for multicore platforms. A major
bonus of Rth is that we can run our code on either multicore machines or
GPUs.

Let’s test it first:

> l ibrary (Rth)
Loading r equ i r ed package : Rcpp
> x <− runif (25)
> x

[1] 0 .90189818 0.68357514 0.93200351 0.41806736
0.40033254 0.09879424
[7] 0 .70001364 0.01025429 0.30682519 0.74398691
0.04592790 0.57226260

[1 3] 0 .66428642 0.14953737 0.30014257 0.92142903
0.99587218 0.16254603
[1 9] 0 .36737230 0.46898850 0.76138804 0.67405064
0.15926002 0.19043531
[2 5] 0 .81125042
> r t h s o r t (x)

[1] 0 .01025429 0.04592790 0.09879424 0.14953737
0.15926002 0.16254603
[7] 0 .19043531 0.30014257 0.30682519 0.36737230
0.40033254 0.41806736

[1 3] 0 .46898850 0.57226260 0.66428642 0.67405064
0.68357514 0.70001364
[1 9] 0 .74398691 0.76138804 0.81125042 0.90189818
0.92142903 0.93200351
[2 5] 0 .99587218

Timings will be presented shortly.

Again, one does not need to know Thrust/C/C++/CUDA to use Rth, but
it is instructive to look at the implementation:

// Rth i n t e r f a c e to Thrust s o r t

#include <th rus t/dev i c e vec to r . h>
#include <th rus t/ s o r t . h>

#include <Rcpp . h>
#include ”backend . h”

RcppExport SEXP r t h s o r t double (SEXP a ,

228 CHAPTER 10. SORTING

SEXP decreas ing , SEXP inp lace , SEXP nthreads)
{

// cons t ruc t a C++ proxy for the R vecto r
Rcpp : : NumericVector xa (a) ;

// s e t up dev i ce vec to r and copy xa to i t
th rus t : : dev i c e vector<double> dx (xa . begin () , xa . end ()) ;

// sort , then copy back to R vecto r
i f (INTEGER(dec r ea s ing) [0])

th rus t : : s o r t (dx . begin () , dx . end () ,
th rus t : : g r eate r<double> ()) ;

else
th rus t : : s o r t (dx . begin () , dx . end ()) ;

i f (INTEGER(i n p l a c e) [0]) {
th rus t : : copy (dx . begin () , dx . end () , xa . begin ()) ;
// return xa ;

} else {
Rcpp : : NumericVector xb (xa . s i z e ()) ;
th rus t : : copy (dx . begin () , dx . end () , xb . begin ()) ;
return xb ;

}
}

Note that R modes double and integer are treated separately, so the above
needs to be adapted for the latter mode.

An optional argument to rthsort(), decreasing specifies a sort in de-
scending order if TRUE. Connected with that is use of the INTEGER()
function. This is from R internals, not Rcpp, but it is similar to the latter.
We input a SEXP and form a C++ proxy for it. In this case, the input is
an integer vector (of length 1).1 The output of INTEGER() is a C++
integer vector, and we want the first (and only) element, which has index
0 in the C++ world.

This is then used in the statement

thrus t : : sort (dx . begin () , dx . end () , th ru s t : : g reate r<i n t>()) ;

Thrust has an optional argument that specifies the type of comparison to
be used in a sort. Here we specify the built-in Thrust function

thrus t : : g r eate r<int >(x , y)

1Logical values in R can be taken to be integers.

10.6. SOME TIMING COMPARISONS 229

which returns true if x > y. Due to the way Thrust’s sort function is
set up, this amounts to specifying a descending-order sort. But we could
set up a custom sort, with our own comparison function tailored to our
application.

The fact that Rcpp and Thrust are both modeled after C++ STL makes
them rather similar to each other; learn one, and then learning the other is
much easier. Thus statements such as

th rus t : : copy (dx . begin () , dx . end () , xb . begin ()) ;

are straightforward.

10.6 Some Timing Comparisons

Here we compare R’s built-in serial sort(), our multicore implementation
of Bucket Sort, and Rth’s rthsort() with an OpenMP backend.2

n function # threads time (s)

50000000 sort() 1 11.132
50000000 mcbsort() 4 11.173
50000000 rthsort() 4 4.162
50000000 mcbsort() 8 11.009
50000000 rthsort() 8 3.852

100000000 sort() 1 21.445
100000000 mcbsort() 4 21.856
100000000 rthsort() 4 7.647
100000000 mcbsort() 8 22.137
100000000 rthsort() 8 7.728
250000000 sort() 1 90.079
250000000 mcbsort() 4 51.951
250000000 rthsort() 4 22.865
250000000 mcbsort() 8 51.005
250000000 rthsort() 8 19.806

Moving from R to C/C++ really paid off here. Note too that the pure R
parallelization gave no speed advantage until we tried the largest size, n =
250000000. And even then, mcbsort() did not benefit when we increased
the number of threads from 4 to 8.

2The directly OpenMP Quicksort in Section 10.4 was not included, as it was not
called from R.

230 CHAPTER 10. SORTING

A run with n = 50000000 on a GeForce GTX 550 Ti GPU took only 1.243
seconds, less than a third of the 8-core run on the multicore machine. How-
ever, an attempt with n = 100000000 failed, due to the graphics card having
insufficient memory. For solutions, see Section 10.7.

10.7 Sorting on Distributed Data

Recall Chapter 9, in which it was explained that with really large data sets,
it may be desirable to store a file in chunks. Though it appears as a single
file to the user, the file is broken down into many separate files, under
different (typically numbered) file names, possibly on different disks and
maybe even in geographically separate locations. The Hadoop Distributed
File System exemplifies this approach.

In such a situation, our view of sorting is typically different from what we
have seen earlier in this chapter. Our input data may be in physically sep-
arate files, or possibly in memory but in separate machines, say in a cluster
— and we may wish our output to have the same distributed structure. In
other words, we would have our sorted array stored in chunked form, with
different chunks in different files or on different machines. In this section,
we take a look at how this might be done.

The issues of network latency and bandwidth, discussed in Section 2.5,
become especially acute in clusters and in distributed data sets. Since
sorting is not a parallel operation, these problems are central to developing
efficient parallel sorting in such contexts. This is very dependent on one’s
specific communications context, and only some general suggestions will be
made here.

10.7.1 Hyperquicksort

For simplicity, say we have 2k processes, with ID numbers 0, 1, 2, ..., 2k − 1,
and that our data is distributed among the processes. We won’t present
the details here, but roughly it works as follows.

There are k iterations. At the ith one, the processes are broken down into
disjoint groups called i-cubes, each consisting of 2i processes, and with each
process being assigned a partner within its i-cube. One process in the i-cube
broadcasts its median to all other processes in the i-cube, essentially serving
as a pivot. Then each process does a compare-and-exchange operation with
its partner, with numbers smaller than the pivot being transferred to the
lower-ID partner and the larger numbers going to the higher-ID partner.

10.7. SORTING ON DISTRIBUTED DATA 231

When all the dust clears, the vector is in sorted form, though again in a
distributed manner across the processes.

Chapter 11

Parallel Prefix Scan

Prefix scan computes cumulative operations, like R’s cumsum() for cumu-
lative sums:

> x <− c (12 ,5 , 13)
> cumsum(x)
[1] 12 17 30

The scan for sums of (12,5,13) would then be

(12, 12 + 5, 12 + 5 + 13) = (12, 17, 30),

as we saw above.

11.1 General Formulation

In its general, abstract form, we have some associative operator, ⊗, and pre-
fix scan inputs sequence of objects (x0, ..., xn−1), and outputs (s0, ..., sn−1),
where

s0 = x0,
s1 = x0 ⊗ x1,

s2 = x0 ⊗ x1 ⊗ x2,
...,

sn−1 = x0 ⊗ x1 ⊗ ...⊗ xn−1

(11.1)

233

234 CHAPTER 11. PREFIX SCAN

The operands xi need not be numbers. For instance, they could be matrices,
with ⊗ being matrix multiplication.

The form of scan used above is called inclusive scan, in which xi is in-
cluded in si. The exclusive version omits xi. So for instance the exclusive
cumulative sum vector in the little example above would be

(0, 12, 12 + 5) = (0, 12, 17),

11.2 Applications

Prefix scan has become a popular tool with which to implement paral-
lel computing algorithms, applicable in a surprising variety of situations.
Consider for instance a parallel filter operation, like

> x
[1] 19 24 22 47 27 8 28 39 23 4 43 11 49 45 43
2 13 8 50 41 24 13 7 14 38

> y <− x [x > 28]
> y
[1] 47 39 43 49 45 43 50 41 38

With an eye toward parallelizing this operation, let’s see how to cast it as
a prefix scan problem, as follows:

> b <− as . integer (x > 28)
> b

[1] 0 0 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 1
> cumsum(b)

[1] 0 0 0 1 1 1 1 2 2 2 3 3 4 5 6 6 6 6 7 8 8 8 8 8 9

Look where the vector b changes values — at elements 4, 8, 11, 13, 14, 15,
19, 20 and 25. But these are precisely the elements of x that go into y.

So here cumsum(), a prefix scan operation, enabled the filtering operation.
Thus, if we can find a way to parallelize prefix scan, we can parallelize
filtering. (The creation of b above, and the operation of checking changed
values in b, are embarrassingly parallel.)

And, surprisingly, that gives us an efficient way to parallelize quicksort.
The partitioning step — finding all elements less than the pivot and all
greater than it — is just two filters, after all. The first step in a bucket sort
is also a filter.

11.3. GENERAL STRATEGIES 235

11.3 General Strategies

So, how can we parallelize prefix scan? Actually, there are pretty good
methods for this.

11.3.1 A Log-Based Method

A common method for parallelizing prefix scan first works with adjacent
pairs of the xi, then pairs spaced two indices apart, then four, then eight,
and so on.

For the time being, we’ll assume we have n threads, i.e., one for each datum.
Clearly this condition will typically not hold, but we’ll extend things later.
Thread i will handle assignments to xi. Here’s the basic idea, say for n = 8:

Step 1:

x1 ← x0 + x1 (11.2)

x2 ← x1 + x2 (11.3)

x3 ← x2 + x3 (11.4)

x4 ← x3 + x4 (11.5)

x5 ← x4 + x5 (11.6)

x6 ← x5 + x6 (11.7)

x7 ← x6 + x7 (11.8)

Step 2:

x2 ← x0 + x2 (11.9)

x3 ← x1 + x3 (11.10)

x4 ← x2 + x4 (11.11)

x5 ← x3 + x5 (11.12)

x6 ← x4 + x6 (11.13)

x7 ← x5 + x7 (11.14)

236 CHAPTER 11. PREFIX SCAN

Step 3:

x4 ← x0 + x4 (11.15)

x5 ← x1 + x5 (11.16)

x6 ← x2 + x6 (11.17)

x7 ← x3 + x7 (11.18)

In Step 1, we look at elements that are 1 apart, then Step 2 considers the
ones that are 2 apart, then 4 for Step 3.

Why does this work? Consider how the contents of x7 evolve over time.
Let ai be the original xi, i = 0,1,...,n-1. Then here is x7 after the various
steps:

Step contents

1 a6 + a7
2 a4 + a5 + a6 + a7
3 a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7

So in the end x7 will indeed contain what it should. Working through the
case i = 2 shows that x2 eventually contains a0+a1+a2, again as it should.
Moreover, “eventually” comes early in this case, at the end of Step 2; this
will be an important issue below.

For general n, the routing is as follows. At Step i, each xj is routed both
to itself and to xj+2i−1 , for j >= 2i−1.

There will be log2n steps if n is a power of 2; otherwise the number of steps
is blog2nc.

Note these important points:

• The location xi appears both as an input and an output in the as-
signment operations above. In our code implementation, we need to
take care that the location is not written to before its value is read.

One way to do this is to set up an auxiliary array yi. In odd-numbered
steps, the yi are written with the xi as inputs, and vice versa for the
even-numbered steps. This class of approaches in general—in which
we maintain two data objects instead of one, alternating between
them—are called red and black methods, inspired by a checkerboard,
in which adjoining squares are of different colors. Here the xi are
“red” and the yi are “black.”

11.3. GENERAL STRATEGIES 237

• Again note the fact that as times goes on, more and more threads
become idle; xi will not change after Step i at the latest, typically
earlier. Thus thread i will become idle, and load balancing is poor.

• Synchronization at each step incurs overhead in a multicore/multi-
processor setting. (Worse for GPU if multiple blocks are used).

Now, what if n is greater than p, our number of threads, the typical case?
One approach would be to make the assignment of threads to data be
dynamic, reconfigured at each step. If at any given step we have k nonidle
xi, then we assign each thread to handle about k/p of the xi positions.

11.3.2 Another Way

Instead of the above bottom-up approach, we could go top-down, with only
one level, as follows. As you’ve seen before, the natural approach would
be to break the vector into chunks, run the algorithm on each chunk, and
somehow combine the results:

(a) Break the xi into p chunks, of size approximately n/p.

(b) Have each thread compute the prefix scan for its chunk.

(c) Compute the prefix scan of the right-hand endpoints of the chunks.
(Actually, we need only the first p− 1.)

(d) Have each thread adjust its own prefix scan according to the result of
step (c).

Here’s pseudocode for an approach along these lines. Let Ti denote thread
i.

break the array into p blocks
parallel for i = 0,...,p-1

Ti does scan of block i, resulting in Si
form new array G of rightmost elements of each Si
do parallel scan of G
parallel for i = 1,...,p-1

Ti adds Gi to each element of block i+1

For example, say we have the array

2 25 26 8 50 3 1 11 7 9 29 10

238 CHAPTER 11. PREFIX SCAN

and wish to compute a sum scan, i.e., cumulative sums. Suppose we have
three threads. We break the data into three sections,

2 25 26 8 50 3 1 11 7 9 29 10

and then apply a scan to each section:

2 27 53 61 50 53 54 65 7 16 45 55

But we still don’t have the scan of the array overall. That 50, for instance,
should be 61+50 = 111 and the 53 should be 61+53 = 114. In other words,
61 must be added to that second section, (50,53,54,65), and 61+65 = 126
must be added to the third section, (7,16,45,55). This then is the last step,
yielding

2 27 53 61 111 114 115 126 133 142 171 181

11.4 Implementations of Parallel Prefix Scan

The above pseudocode is easy to implement, and indeed we’ll do so in an
example below. But it’s worth noting that parallel prefix scan is already
implemented in various libraries, including:

• The MPI standard actually includes built-in parallel prefix functions,
MPI Scan(). A number of choices are offered for the ⊗ operator,
such as maximum, minimum, sum and product.

• The Thrust library for CUDA or OpenMP/TBB includes functions
inclusive scan() and exclusive scan(). We’ll see an example in
Section 11.6.

• TBB itself offers the parallel scan() function.

• The CUDPP (CUDA Data Parallel Primitives Library) package con-
tains CUDA functions for sorting and other operations, many of which
are based on parallel scan.

Some of these are rather complicated, but offer wide generality.

Note carefully that prefix scan is generally an O(n) operation. Thus the
discussion in Section 2.9 suggests that communications overhead can be a
big issue. The availability of libraries does not necessarily imply that they
will work well on your application, on your platform.

11.5. PARALLEL CUMSUM() WITH OPENMP 239

11.5 Parallel cumsum() with OpenMP

Here we will write C++ code to do parallel computation of cumulative
sums, using OpenMP. The code will be callable from R, via Rcpp.

// p a r a l l e l analog o f cumsum () , us ing OMP

#include <Rcpp . h>
#include <omp . h>

// input vec to r x , number o f d e s i r e d threads nth
RcppExport SEXP ompcumsum(SEXP x , SEXP nth)
{

Rcpp : : NumericVector xa (x) ;
int nx = xa . s i z e () ;

// cumulat ive sums vec to r
double csms [nx] ;

// s e t number o f threads , and a l l o c a t e adjustment
// va lue s vec to r ; INTEGER i s a SEXP cons t ruc t
int nthreads = INTEGER(nth) [0] ;
omp s e t num threads (nthreads) ;
// space to s t o r e the block endpoint sums
double adj [nthreads −1] ;

int chunks ize = nx / nthreads ;

// output vec to r
Rcpp : : NumericVector csout (nx) ;

#pragma omp p a r a l l e l
{

int me = omp get thread num () ;
int mystart = me ∗ chunksize ,

myend = mystart + chunks ize − 1 ;
i f (me == nthreads −1) myend = nx − 1 ;
int i ;

// do cumulat ive sums for my chunk
double sum = 0 ;
for (i = mystart ; i <= myend ; i++) {

sum += xa [i] ;

240 CHAPTER 11. PREFIX SCAN

csms [i] = sum ;
}

// f i n d adjustment va lue s
//
// f i r s t , make sure a l l the chunk cumsusm
// are ready
#pragma omp b a r r i e r
// only one thread need compute and
// accumulate the r ight−hand endpoints
#pragma omp s i n g l e
{

adj [0] = csms [chunksize −1] ;
i f (nthreads > 2)

for (i = 1 ; i < nthreads −1; i++) {
adj [i] =

adj [i −1] + csms [(i +1)∗chunksize −1] ;
}

}
// impl i ed b a r r i e r at the end o f any
// ’ s i n g l e ’ pragma

// do my adjustments
double myadj ;
i f (me == 0) myadj = 0 ;
else myadj = adj [me−1] ;
for (i = mystart ; i <= myend ; i++)

csout [i] = csms [i] + myadj ;
}
// impl i ed b a r r i e r at the end o f any
// ’ p a r a l l e l ’ pragma
return csout ;

}

The code is a straightforward application of the OpenMP principles we
learned earlier. Compile and run as in Section 5.5.5. Note that one must
use as.integer() for nth in the R call, e.g.

. Call (”ompcumsum” ,x , as . integer (2))

11.5. PARALLEL CUMSUM() WITH OPENMP 241

11.5.1 Stack Size Limitations

In the above code, consider the innocuous-looking lines,

double csms [nx] ;
. . .
Rcpp : : NumericVector csout (nx) ;

Recall the discussion in Section 4.1.2, regarding how local variables are
usually stored in memory: Each thread is assigned space in memory called
a stack, in which local variables for a thread are stored. In our example
above, csms and csout are such variables.

The significance of this is that the operating system typically places a limit
on the size of a stack. Since our cumulative sum code is typically going
to run on very large vectors (otherwise the serial version, R’s cumsum(),
is fast enough), we run the risk of running out of stack space, causing an
execution error.

Typical OSs allow you to change the default stack size, in various ways.
This will be done in the next section. However, it brings up an issue
as to whether we want to follow basic R philosophy of not having side
effects. In our setting here, if we were willing to violate that informal rule,
we could write the above code so that csout is one of the arguments to
ompcumsum(), rather than being its return value. As long as our actual
csout is a top-level variable, i.e., set at the > command-line level, it would
not be on a stack, hence would not cause stack issues.

11.5.2 Let’s Try It Out

I ran this code from a C shell, and first set a large stack space of over 4
billion bytes, to accommodate calculation of cumulative sums on an array
of length 500 million::

% l i m i t s t a c k s i z e 4000m

In the bash shell I would have used ulimit, say

% u l i m i t −s 4000000

Or, on any system, I could have set the stack size as one of the arguments
to gcc.

I tried 2 through 16 cores, spaced 2 apart, on the 16-core machine described
in this book’s Preface. In order to reduce sampling variation, I performed

242 CHAPTER 11. PREFIX SCAN

Figure 11.1: OMP Cumulative Sum Run Times

three runs at each value of the number of cores. The results are showing in
Figure 11.1.

For this particular sample size, adding more cores increases speed up about
8 cores, after which there is no improvement.

By comparison, the median time for R’s cumsum() in three runs was
10.553. So, even 2 cores yielded a speedup of much more than 2, reflecting
the fact that we are working purely at the C++ level.

11.6 Example: Moving Average

A moving average is defined as follows. With input x1, .., xn and window
width w, the output is aw, ..., an, where

ai =
xi−w+1 + ...+ xi

w
(11.19)

11.6. EXAMPLE: MOVING AVERAGE 243

The goal is to address the question, “What has the recent trend been?” at
time i, i = w, ..., n.

11.6.1 Rth Code

Rth includes the function rthma() to compute moving average in parallel,
using an algorithm adapted from the Thrust examples package. Here is the
C++ code, contents of the file rthma.cpp:

// Rth i n t e r f a c e to Thrust moving−average example ,
// s imple moving average . cu in
// github . com/ th rus t/ th rus t/blob/master/examples/

// C++ code adapted from example in Thrust docs

#include <th rus t/dev i c e vec to r . h>
#include <th rus t/scan . h>
#include <th rus t/ trans form . h>
#include <th rus t/ f u n c t i o n a l . h>
#include <th rus t/ sequence . h>
#include <Rcpp . h>
#include ”backend . h” // from Rth

// update funct ion , to c a l c u l a t e cur rent moving
// average value from the prev ious one
struct minus and d iv id e :

pub l i c th rus t : : b inary funct ion<double , double ,
double>

{
double w;
minus and d iv id e (double w) : w(w) {}

host dev i c e
double operator () (const double& a ,

const double& b) const
{ return (a − b) / w; }

} ;

// computes moving averages from x o f window width w
RcppExport SEXP rthma (SEXP x , SEXP w, SEXP nthreads)
{

Rcpp : : NumericVector xa (x) ;
int wa = INTEGER(w) [0] ;

244 CHAPTER 11. PREFIX SCAN

#i f RTH OMP
omp s e t num threads (INT(nthreads)) ;
#e l i f RTH TBB
tbb : : task s chedu l e r i n i t i n i t (INT(nthreads)) ;
#e n d i f

// s e t up dev i ce vec to r and copy xa to i t
th rus t : : dev i c e vector<double> dx (xa . begin () ,

xa . end ()) ;

int xas = xa . s i z e () ;
i f (xas < wa)

return 0 ;

// a l l o c a t e dev i ce s to rage for cumulat ive sums ,
// and compute them
thrus t : : dev i c e vector<double>

csums (xa . s i z e () + 1) ;
th rus t : : e x c l u s i v e scan (dx . begin () , dx . end () ,

csums . begin ()) ;
// need one more sum at (a c t u a l l y past) the end
csums [xas] = xa [xas−1] + csums [xas −1] ;

// compute moving averages from cumulat ive sums
Rcpp : : NumericVector xb (xas − wa + 1) ;
th rus t : : t rans form (csums . begin () + wa , csums . end () ,

csums . begin () , xb . begin () ,
minus and d iv id e (double (wa))) ;

return xb ;
}

11.6.2 Algorithm

Again with the xi as inputs, it first computes the cumulative sums ci, using
the Thrust function exclusive scan():

th rus t : : e x c l u s i v e scan (dx . begin () , dx . end () ,
csums . begin ()) ;

11.6. EXAMPLE: MOVING AVERAGE 245

Here dx contains a copy of the xi on the device (GPU or OpenMP/TBB),
and csums will contain our cumulative sums ci.

Since the numerator of (11.19) is

xi−w+1 + ...+ xi = ci − ci−w (11.20)

We then need only compute these differences ci − ci−wand divide by w.

To do all this, we use Thrust’s transform() function:

th rus t : : t rans form (csums . begin () + wa , csums . end () ,
csums . begin () , xb . begin () ,
minus and d iv id e (double (wa))) ;

As the name implies, transform() takes one or more inputs, applies a
user-specified transformation, and writes to an output vector. You can see
that the first two arguments are first the ci, shifted left by w, and then the
ci themselves. The functor computes the values in (11.20) and divides by
w:

s t r u c t minus and d iv id e :
pub l i c th rus t : : b inary function<double ,

double , double>
{

double w;
minus and d iv id e (double w) : w(w) {}

host dev i c e
double operator () (const double& a , const double& b)

const
{ return (a − b) / w; }

} ;

11.6.3 Performance

I ran the code on the 16-core multicore machine again. Since this machine
has hyperthread degree 2 (Section 1.4.5.2), it may continue to give speedups
through 32 threads. For each number of threads, the experiment consisted
of first running the function runmean() (“running mean,” i.e., moving
average) from the R package caTools in order to establish a baseline run
time:

> n <− 1500000000

246 CHAPTER 11. PREFIX SCAN

Figure 11.2: Rthma Run Times

> x <− runif (n)
> system . time (runmean (x , 1 0))

user system e lapsed
39 .326 15 .925 55 .334

I then ran rthma() for various numbers of cores. Note that I had to
choose between OpenMP and TBB, and first selected the former. Look at
the results in Figure 11.2.

Again owing to using C++, we already get a performance gain even with
a single core, compared to using runmean().

As the number of cores increases, we attain a modest improvement, up
through about 12 cores. After that it is flat, possibly with some deterio-
ration as seen for instance in Figure 2.2. A more thorough study would
require multiple run times at each value of the number of cores.

Well, what about TBB? Running rthma() with a TBB backend, and al-
lowing TBB to choose the number of cores for us, I had a run time of 34.233
seconds, slightly better than the best OpenMP time.

11.6. EXAMPLE: MOVING AVERAGE 247

In addition, I tried it on a GPU. Due to memory limitations on the GPU,
the test case was smaller. Here are the results:

> n <− 250000000; x <− runif (n) ;
> system . time (runmean (x , 1 0)) ;

user system e lapsed
6 .972 3 .440 10 .449

> system . time (. Call (”rthma” ,x , as . integer (10) ,
as . integer (−1)))

user system e lapsed
2 .628 0 .724 3 .583

This is about triple speedup, very nice, though not commensurate with
the large number of cores in the GPU. Presumably the communications
overhead here was very much a limiting factor.

11.6.4 Use of Lambda Functions

If you have a compiler that allows C++11 lambda functions, these can make
life much simpler for you if you use Thrust, TBB or anything that uses
functors. Let’s see how this would work with our C++ function rthma()
above (scroll down to “changed code”).

#i n c l u d e <t h r u s t / d e v i c e v e c t o r . h>
#i n c l u d e <t h r u s t /scan . h>
#i n c l u d e <t h r u s t / transform . h>
#i n c l u d e <t h r u s t / f u n c t i o n a l . h>
#i n c l u d e <t h r u s t / sequence . h>
#i n c l u d e <Rcpp . h>
#i n c l u d e ” backend . h” // from Rth

// s t r u c t minus and d iv id e now de l e t ed

RcppExport SEXP rthma (SEXP x , SEXP w, SEXP nthreads)
{

Rcpp : : NumericVector xa (x) ;
i n t wa = INTEGER(w) [0] ;
#i f RTH OMP
omp set num threads (INT(nthreads)) ;
#e l i f RTH TBB
tbb : : task s chedu l e r i n i t i n i t (INT(nthreads)) ;
#e n d i f
th rus t : : dev i c e vector<double> dx (xa . begin () ,

248 CHAPTER 11. PREFIX SCAN

xa . end ()) ;
i n t xas = xa . s i z e () ;
i f (xas < wa) return 0 ;
th rus t : : dev i c e vector<double>

csums (xa . s i z e () + 1) ;
th rus t : : e x c l u s i v e scan (dx . begin () , dx . end () ,

csums . begin ()) ;
csums [xas] = xa [xas−1] + csums [xas −1] ;
Rcpp : : NumericVector xb (xas − wa + 1) ;

// changed code
thrus t : : transform (csums . begin () + wa , csums . end () ,

csums . begin () , xb . begin () ,
// lambda function
[=] (double& a , double& b) { return ((a−b)/wa) ;

}) ;

return xb ;
}

Just what is going on in the line

[=] (double& a , double& b) { return ((a−b)/wa) ; }) ;

We are creating a function object here, as we did in the earlier version with
an operator() notation within a struct. But here we are doing so right
on the spot, in one of the arguments to thrust::transform(). It’s similar
to the concept of anonymous functions in R. Here are the details:

• The brackets in [=] tells the compiler that a function object is about
to begin. (The = sign will be explained shortly.)

• The variable wa that was local to the function rthma() is considered
“global” to our lambda function, thus accessible to it without passing
wa as an argument to that function. (This too is similar to the R
case.) We say that wa is captured by that function.

The = indicates that we wish to use wa by value, i.e., just for its value
alone, rather than it being a pointer that we wish to reference. If it
had been the latter (with the capability of changing the pointed-to
location), we’d use & instead of =.

• Here a and b are ordinary arguments.

11.6. EXAMPLE: MOVING AVERAGE 249

All this is so much clearer and cleaner than using a functor!

By the way, in using g++ for the compilation, I did need to add the
-std=c++11 compiler flag to use lambda functions.

Chapter 12

Parallel Matrix
Operations

The matrix is one of the core types in the R language, so much so that there
is even an entire book titled Hands-on Matrix Algebra Using R (Hrishikesh
Vinod, World Scientific, 2011). And in recent years, the range of applica-
tions of matrices has expanded, from the traditional areas such as regression
analysis and principal components to image processing and the analysis of
random graphs in social networks.

In modern applications, matrices are often huge, with sizes of tens of thou-
sands of rows, and far more, being commonplace. Thus there is a large
demand for parallel matrix algorithms, the subject of this chapter.

There is a plethora of parallel matrix software available to R programmers.
For GPU, for instance, there are R packages gputools, gmatrix (this one
especially noteworthy because it enables us to follow the Principle of “Leave
It There,” Section 2.5.2), MAGMA and so on. Indeed, more and more
of them are being developed. See also PLASMA and HiPLAR, as well as
pdbDMAT.

Thus this chapter cannot provide comprehensive coverage of everything
that is out there for parallel linear algebra in R. In addition, in some special
cases the libraries don’t quite do what we need. Thus, our coverage will
consist mainly of basic, general principles, with examples using some of the
libraries. Selection of libraries for the examples will be based mainly on
ease of installation and use.

251

252 CHAPTER 12. MATRIX OPERATIONS

12.1 Tiled Matrices

Parallel processing of course relies on finding a way to partition the work to
be done. In the matrix algorithms case, this is typically done by dividing
a matrix into blocks, often called tiles these days.

For example, let

A =

 1 5 12
0 3 6
4 8 2

 (12.1)

and

B =

 0 2 5
0 9 10
1 1 2

 , (12.2)

so that

C = AB =

 12 59 79
6 33 42
2 82 104

 . (12.3)

We could partition A as

A =

(
A11 A12

A21 A22

)
, (12.4)

where

A11 =

(
1 5
0 3

)
, (12.5)

A12 =

(
12
6

)
, (12.6)

A21 =
(

4 8
)

(12.7)

12.2. EXAMPLE: SNOWDOOP APPROACH 253

and

A22 =
(

2
)
. (12.8)

Similarly we would partition B and C into blocks of a compatible size to A
(“compatible” to be explained shortly),

B =

(
B11 B12

B21 B22

)
(12.9)

and

C =

(
C11 C12

C21 C22

)
, (12.10)

with for example

B21 =
(

1 1
)
. (12.11)

The key point is that multiplication still works if we pretend that those
submatrices are numbers! The matrices A, B and C would all be thought
of as of “2 × 2” size, in which case we would have for example

C11 = A11B11 +A12B21, (12.12)

(In that expression on the right, we are still treating A11 etc. as matrices,
even though we got the equation by pretending they were numbers.)

The reader should verify this really is correct as matrices, i.e., the compu-
tation on the right side really does yield a matrix equal to C11. You can
see now what kind of compatibility is needed. For instance, the number of
rows in B11 must match the number of columns in A11 and so on.

12.2 Example: Snowdoop Approach

Suppose we wish to compute the matrix product AB. In the Snowdoop
context, the multiplier A may be stored in chunks at various nodes. Or,
another situation might be one in which we wish to use a GPU but A is
too large to fit in the GPU’s memory. In that case again we may wish to

254 CHAPTER 12. MATRIX OPERATIONS

process A in chunked form. Note that this is a special case of tiling. Here
we will see how to deal with this, using the GPU case for illustration.

Consider computation of a product Ax, where A is a matrix and x is a
conformable vector. Suppose A is too large to fit in our GPU. Our strategy
will be simple: Break A into tiles of rows, multiply x by each tile of A, and
concatenate the results to yield Ax, as we did in Section 1.4.4. The code is
equally simple, say with gputools (Section 6.7.1):

GPUTiling .R

biggpuax <− function (a , x , n t i l e s)
{

require (p a r a l l e l)
require (gputoo l s)
nrx <− nrow(a)
y <− vector (length=nrx)
t i l e s i z e <− f loor (nrx / n t i l e s)
for (i in 1 : n t i l e s) {

t i l e b e g i n <− (i −1) ∗ t i l e s i z e + 1
t i l e e n d <− i ∗ t i l e s i z e
i f (i == n t i l e s) t i l e e n d <− nrx
t i l e <− t i l e b e g i n : t i l e e n d
y [t i l e] <− gpuMatMult (a [t i l e , , drop=FALSE] , x)

}
y

}

Note that in this (single) GPU context, although the work within a tile
is done in parallel, it is still serial between tiles. Moreover, we incur the
overhead of communication between the CPU and GPU. This may hamper
our efforts to achieve speedup.

On the other hand, if we have multiple GPUs, or if we have a Snowdoop
setting, this partitioning could be a win.

12.3 Parallel Matrix Multiplication

Since so many parallel matrix algorithms rely on matrix multiplication, a
core issue is how to parallelize that operation, generalizing the tiled ap-
proach in the last section.

As multiplication is “embarrassingly parallel,” one might at first think it

12.3. PARALLEL MATRIX MULTIPLICATION 255

is easy to do efficiently. However, there are serious overhead issues on any
platform, as we’ll see.

Denote our desired product by AB. Let’s suppose for the sake of simplicity
that each of the matrices to be multiplied is of dimensions n × n. Let
p denote the number of “processes,” such as shared-memory threads or
message-passing nodes.

12.3.1 Multiplication on Message-Passing Systems

Sections 1.4.4 and 12.2 showed how to parallelize a matrix-vector product
computation in snow, by breaking the matrix rows into tiles, and then
exploiting the tiling properties of matrices. Computation of matrix-matrix
products can be done in the same way. But there are more sophisticated
methods available.

12.3.1.1 Distributed Storage

Recall the concept of breaking files into chunks, such as with the Hadoop
Distributed File System. Typical algorithms for the message-passing setting
assume that the matrices A and B in the product AB are stored in a
distributed manner across the nodes, in a cluster, and that the product will
be distributed too.

In addition to formal MapReduce settings, this situation could arise for
several reasons:

• The application is such that it is natural for each node to possess only
part of A and B.

• One node, say node 0, originally contains all of A and B, but in order
to conserve network communication time, it sends each node only
parts of those matrices.

• An entire matrix would not fit in the available memory at the indi-
vidual nodes.

12.3.1.2 Fox’s Algorithm

For ease of exposition, let’s assume that
√
p evenly divides n, and partition

each matrix into tiles of size
√
p×√p. Each matrix will be divided into m

rows and m columns of blocks, where m = n/
√
p.

256 CHAPTER 12. MATRIX OPERATIONS

Consider the node that has the responsibility for calculating block (i,j) of
the product C, which it calculates as

Cij = Ai1B1j +Ai2B2j + ...+AiiBij + ...+Ai,mBm,j (12.13)

It will be convenient here (only in this section) to number rows and columns
starting at 0 instead of 1, as the code uses the mod operator based on that
setting. Now rearrange (12.13) with Aii first:

AiiBij+Ai,i+1Bi+1,j+...+Ai,m−1Bm−1,j+Ai0B0j+Ai1B1j+...+Ai,i−1Bi−1,j
(12.14)

The algorithm is then as follows. The node which is handling the compu-
tation of Cij does this (in parallel with the other nodes which are working
with their own values of i and j):

iup = i+1 mod m;

idown = i-1 mod m;

for (k = 0; k < m; k++) {

km = (i+k) mod m;

broadcast(A[i,km]) to all nodes handling row i of C;

C[i,j] = C[i,j] + A[i,km]*B[km,j]

send B[km,j] to the node handling C[idown,j]

receive new B[km+1 mod m,j] from the node

handling C[iup,j]

}

The main idea is to have the various computational nodes repeatedly ex-
change submatrices with each other, timed so that a node receives the
submatrix it needs for its computation “just in time.”

The algorithm can be adapted in the obvious way to nonsquare matrices,
etc.

12.3.1.3 Overhead Issues

In a cluster context, the usual overhead issues of network communication
are central.

12.3. PARALLEL MATRIX MULTIPLICATION 257

There is a lot of opportunity here to overlap computation and communica-
tion, which is the best way to solve the communication problem. (Recall
the concept of latency hiding, Section 2.5.)

Obviously this algorithm is best suited to settings in which we have PEs
(Section 2.5.1.2) in a mesh topology, meaning that each PE is connected to
its “north,” “south,” “east and “west” neighbors, or something similar, even
a torus. MPI broadcast operations, used with its advanced communicator
capability, can really take advantage of this, for instance.

12.3.2 Multiplication on Multicore Machines

Since a matrix multiplication in serial form consists of nested loops, a natu-
ral way to parallelize the operation in OpenMP is through the for pragma,
e.g.

// nrowsa i s the number o f rows o f A etc .
#pragma omp p a r a l l e l for
for (i = 0 ; i < nrowsa ; i++)

for (j = 0 ; j < nco l sb ; j++) {
sum = 0 ;
for (k = 0 ; k < nco l sa ; k++)

sum += a [i] [k] ∗ b [k] [j] ;
c [i] [j] = sum ;

}
}

This parallelizes the outer loop. Let p denote the number of threads. Since
each value of i in that loop handles one row of A, what we are doing here
is breaking the matrix into p sets of rows of A. A thread computes the
product of a row of A and all of B, which becomes the corresponding row
of C.

Note, though, that from the discussion on page 122 we know the sets of
rows are not necessarily “chunks;” the rows of A processed by a given thread
may not be contiguous. We will return to this point shortly.

12.3.2.1 Overhead Issues

First and foremost, cache effects must be considered. (The reader may wish
to review Sections 2.3.1 and 5.8 before continuing.) Suppose for the moment
that we are working purely in C/C++, which uses row-major storage.

258 CHAPTER 12. MATRIX OPERATIONS

As we execute the innermost (“k”) loop above, we are traversing a row of A
and a column of B. We thus have fairly good spatial (though not locality for
A and C, but poor locality for B. R of course uses column-major storage,
but the same considerations apply.

Furthermore, as noted above, the rows executed by any given thread may
not be contiguous, again adversely impacting spatial locality. We may wish
to remedy this, for example, by using the chunking parameters presented
in Section 5.3.

We can’t get good locality everywhere, so we might leave it as above, but
there are other considerations. One issue is task granularity. As discussed
before, e.g. in Section 5.3, with too large a task size we risk having poor
load balance near the end of our computation. If we do our tiling only in
A, it may be difficult to set a small enough task size.

So, efficient shared-memory software typically also parallelizes work on the
columns of A and C above, so that we parallelize not only the “i” loop
above but also the “j” one. In OpenMP, one could use the collapse clause.
For example,

#pragma omp f o r c o l l a p s e (2)

means, “parallelize the 2 nested loops that follow.”

There is yet another issue—having aligned data objects. Well, you wouldn’t
want unaligned data, would you? But seriously, it actually is a big issue,
as follows.

Let r denote the memory address at which our matrix A starts in memory.
If r is not a multiple of the cache block size, say 64 bytes, then A will start
in the middle of some memory block. Suppose part of the matrix B is also
in that block. Then we may have the false sharing problem discussed in
Section 5.8. This could put a significant damper on performance. We may
be able to get the compiler to align objects for us, or we might simply place
some “filler” zeroes at the beginning of A to arrange for the “real” part of
A to begin at an address that is a multiple of 64.

As you can see, good parallel computation sometimes requires some low-
level tweaking.

12.3.3 Matrix Multiplication on GPUs

Again think of a matrix product AB = C. Given that CUDA tends to
work better if we use a large number of threads, a natural choice is for each

12.3. PARALLEL MATRIX MULTIPLICATION 259

thread to compute one element of the product C, like this:

g l o b a l void matmul (f loat ∗a , f loat ∗b , f loat ∗c ,
int nrowsa , int ncolsa , int nco l sb)

{ int k , i , j ; f loat sum ;
// t h i s thread w i l l compute c [i] [j] ; the va lue s o f
// i and j w i l l be determined accord ing to thread
// and block ID (not shown)
sum = 0 ;
for (k = 0 ; k < nco l sa ; k++)

// add a [i , k] ∗ b [k , j] to sum
sum += a [i ∗nco l sa+k] ∗ b [k∗nco l sb+j] ;

// a s s i g n to c [i , j]
c [i ∗nco l sb+j] = sum ;

}

This should produce a good speedup. But we can do even better, much
better, as discussed below.

12.3.3.1 Overhead Issues

As is typical on GPUs, memory issues are central. First, if the matrices
to be multiplied are not already on the “device,” i.e., in the GPU memory,
they must be copied there, causing a delay.

Second, note again that large matrices may not fit in the GPU memory. In
this case we must resort to tiling as in Section 12.2 (in addition to whatever
tiling is done in the GPU computation itself), which means we will incur
the copying overhead multiple times.

Another memory issue is stride (Section 3.11). A big difference between
programming on multicore machines and GPUs is that in the latter case,
there is typically available highly detailed information on the hardware
structure, such as the GPU memory-interleaving factor. In tweaking our
algorithm for maximum performance, we want to design it with a stride
that keeps all the banks busy.

Finally, there is the matter of GPU shared memory. Recall that the name
is misleading; actually this memory is a programmer-managed cache.1 One
must write the code to copy data to and from the GPU global memory to
the shared memory, to take advantage of the latter’s speed.

1The memory is shared among all the threads in a given GPU block.

260 CHAPTER 12. MATRIX OPERATIONS

For instance, here is an excerpt of the CUDA matrix-multiply code pre-
sented in a talk given by Prof. Richard Edgar:2

int a = aBegin , b = bBegin ; a <= aEnd ; a += aStep ,
b+= bStep) {

shared f loat As [BLOCK SIZE] [BLOCK SIZE] ;
shared f loat Bs [BLOCK SIZE] [BLOCK SIZE] ;

// Load matr i ce s from g l o b a l memory in to shared memory
// Each thread loads one element o f each sub−matrix
As [ty] [tx] = A[a + (dc wA ∗ ty) + tx] ;
Bs [ty] [tx] = B[b + (dc wB ∗ ty) + tx] ;

Here A and B are in the GPU global memory, and we copy chunks of them
into shared-memory arrays As and Bs. Since the code has been designed
so that As and Bs are accessed frequently during a certain period of the
execution, it is worth incurring the copying delay to exploit the fast shared
memory.

Fortunately, the authors of the CUBLAS library have already done all the
worrying about such matters for you. They have written very finely hand-
tuned code for good performance, making good use of GPU shared memory
and so on.

12.4 BLAS Libraries

In any discussion of high-performance matrix operations, the first question
that arises is, “Which BLAS are you using?”

12.4.1 Overview

BLAS is an acronym for the Basic Linear Algebra Subprograms, a library
of functions that perform very low-level operations such as matrix addition
and multiplication. As will be discussed below, there are various BLAS
implementations, all of them tailored (to varying degrees) to having good
cache behavior and to otherwise have good performance.

R uses “vanilla” BLAS, CBLAS, which for instance comes standard with
Ubuntu Linux. However, one may build R from source to include one’s own
favorite BLAS, or to have the choice of BLAS done dynamically each time
one runs R.

2The same or similar code is available in full on the NVIDIA CUDA Samples website.

12.5. EXAMPLE: PERFORMANCE OF OPENBLAS 261

Thus even in ordinary serial computation, e.g. R’s %*% operator, the speed
of matrix operations may vary according to the version of BLAS that your
implementation of R was built with.

In our context here of parallel computation, one version of BLAS of spe-
cial interest is OpenBLAS, a multithreaded version that can bring perfor-
mance gains on multicore machines, and also includes various efficiencies
that greatly improve performance even in the serial case. We’ll take a closer
look at it in Section 12.5.

As noted, there is also CUBLAS, a version of BLAS for NVIDIA GPUs,
highly tailored to that platform. A number of R packages, such as gputools
and gmatrix, make use of this library, and of course you can write your
own special-purpose R interfaces to it, say using Rcpp to interface it to R.

For message-passing systems (clusters or multicore), there is PBLAS, de-
signed to run on top of MPI. The MAGMA library, with the R interface
magma, aims to obtain good performance on hybrid platforms, meaning
multicore systems that also have GPUs.

BLAS libraries also form the basis of libraries that perform more advanced
matrix operations, such as matrix inversion and eigenvalue computation.
LAPACK is a widely-used package for this. as is ScaLAPACK for PBLAS.

12.5 Example: Performance of OpenBLAS

OpenBLAS is relatively new, having taken over a discontinued project,
GotoBLAS. It is not yet clear what its long-term prospects are, but it
seems very promising indeed.

For the timing experiments below, I simply switched from the default BLAS
to OpenBLAS. This required setting some file permissions, and since I was
running on a machine on which I did not have root access, I installed my
own copy of R, in a directory /home/matloff/MyR311. (I had to build
R with the option –with-shared-blas.) I also downloaded and built Open-
BLAS, installing it in /home/matloff/MyOpenBLAS. I then needed to
replace the R standard BLAS library via a symbolic link, as follows.

I entered the directory /home/matloffMyR311/lib/R/lib and did the
operations

$ mv l ibRb la s . so l i bRb la s . so .SAVE
$ ln −s /home/mat l o f f/MyOpenBLAS/ l i b / l i b o p e n b l a s . so \\

l i bRb la s . so

262 CHAPTER 12. MATRIX OPERATIONS

So, now whenever I run R, it loads OpenBLAS instead of the default BLAS.

OpenBLAS is a threaded application. It doesn’t use OpenMP to man-
age threads, but it does allow one to set the number of threads using the
OpenMP environment variable, e.g. in the bash shell,

$ export OMP NUM THREADS=2

If the number of threads is not set, OpenBLAS will use all available cores.3

Note, though, that this may not be optimal, as we will see later.

It is important to note that that is all I had to do. From that point on, if I
wanted to compute the matrix product AB in parallel, I just used ordinary
R syntax:

> c <− a %∗% b

I ran a squaring operation of random matrices of size 5000× 5000 for 1, 2,
4, 6, 8, 10, 12, 14 and 16 cores on the 16-core machine described in this
book’s preface. Let’s look at the timing, in Figure 12.1. Though there is
quite a bit of sampling variability and we would need to do multiple runs
for a smoother graph, the results are clear: We are achieving linear speedup
(e.g. doubling the number of cores cuts the run time approximately in half)
up to about six cores, after which the returns are diminishing, if positive.

Note that not all multicore systems are alike, in terms of how resources
are shared, say within groups of cores. More than one core may share a
cache, for instance. Thus it’s hard to predict at what point the “diminishing
returns” effect will occur for any given application and any given hardware
platform.

Performance of numerical algorithms is not just about speed; we must also
consider accuracy. OpenBLAS derives its speed not just from making use
of multiple cores, but also from various tweaks of the code, yielding a very
fine degree of optimization. One can thus envision a development team so
obsessed with speed that they might cut some corners regarding numerical
accuracy. Thus the latter is a subject of legitimate concern.

I conducted a brief experiment to investigate this. I generated p × p cor-
relation matrices, with all pairs of variables having correlation ρ, using the
code

covrho <− function (p , rho) {
m <− diag (p)

3If the machine has hyperthreading (Section 1.4.5.2), the number of “cores” will be
the product of the number of cores and the degree of hyperthreading.

12.5. EXAMPLE: PERFORMANCE OF OPENBLAS 263

Figure 12.1: OpenBLAS Run Times

m[row(m) != col (m)] <− rho
m

}

The chosen application was eigenvalue computation, using R’s eigen()
function. I ran this on the 16-core machine, which has a hyperthread-
ing degree of 2, and did not specify the number of threads, so OpenBLAS
likely used 32 threads.

First, one more timing: With p = 2500 and ρ = 0.95, OpenBLAS handily
beat R’s stock BLAS, with a time of 12.101 seconds, versus 57.407 for stock
BLAS.

Now, for the accuracy test: On the advice from a reader of my blog, Mad
(Data) Scientist, I first set an R parameter to display 20 decimal digits in
output:

options (d i g i t s = 20)

264 CHAPTER 12. MATRIX OPERATIONS

For plain R, the main eigenvalue was reported to be 2375.0500000000147338,
while OpenBLAS gave it as 2375.049999999991087. The proportional differ-
ence, about 10−14, seems pretty good for such an ill-conditioned matrix.4

And of course, we don’t know which reported eigenvalue is closer to the
“true” one.

Needless to say, if you are using OpenBLAS and you are already using
all the cores in your machine, it probably would not be profitable to use
OpenMP and the like at the same time.

12.6 Example: Graph Connectedness

Let n denote the number of vertices in the graph. As before, define the
graph’s adjacency matrix A to be the n× n matrix whose element (i, j) is
equal to 1 if there is an edge connecting vertices i and j (i.e., i and j are
“adjacent”), and 0 otherwise. Let R(k) denote the matrix consisting of 1s
and 0s, with a 1 in element (i, j) signifying that we can reach j from i in k
steps. (Note that k is a superscript, not an exponent.)

Also, our main goal will be to compute the corresponding reachability ma-
trix R, whose (i, j) element is 1 or 0, depending on whether one can reach j
in some multistep path from i. In particular, we are interested in determin-
ing whether the graph is connected, meaning that every vertex eventually
leads to every other vertex, which will be true if and only if R consists of
all 1s. Let us consider the relationship between the R(k) and R.

12.6.1 Analysis

First, note that

R = b(

n−1∑
k=1

R(k)) (12.15)

where b() performs a Boolean operation, changing nonzero numbers to 1s
and keepings 0s at 0s.

4The term means that slight changes in the matrix may result in large changes in
output, in this case in the principal eigenvalue. In such a setting, roundoff error could
be quite serious.

12.6. EXAMPLE: GRAPH CONNECTEDNESS 265

So, if we calculate all the R(k), then we have R. But there is a trick we can
employ to avoid finding them all.

To see this, suppose there exists a path of 16 steps from vertex 8 to vertex
3. If the graph is directed, meaning that A is not symmetric, then it may
be the case that there is no path from vertex 3 that eventually returns to
that node. If so, then

R
(16)
83 = 1 (12.16)

but

R
(k)
83 = 0, k > 16 (12.17)

So it would seem that we do indeed need to calculate all the R(k). But we
can actually avoid that, by first making a small modifcation to our graph:
We add artificial “edges” from every vertex to itself. In matrix terms, this
means setting the diagonal elements of A to 1.

Now, in our above example we have

R
(k)
83 = 1, k ≥ 16 (12.18)

since, after step 16, we can keep going from vertex 3 to itself k − 16 times.

This saves us a lot of work—we need compute only R(n−1). So, how can
we do this? We need one last ingredient:

R(k) = b(Ak) (12.19)

Why is this true? For instance, think of trying to go from vertex 2 to vertex
7 in two steps. Here are the possibilities:

• go from 2 to 1 and then from 1 to 7 or

• go from 2 to 2 and then from 2 to 7 or

• go from 2 to 3 and then from 3 to 7 or

• ...

266 CHAPTER 12. MATRIX OPERATIONS

But this says that

R
(2)
27 = b(a21a17 + a22a27 + a23a37 + ...) (12.20)

The key point is that the argument to b() here is (A2)27, demonstrating
(12.19).

So, the original graph connectivity problem reduces to a matrix power
problem. We simply compute An−1 (and then apply b()).

12.6.2 The “Log Trick”

Moreover, we can save computation there as well, by using the “log trick.”
Say we want the 16th power of some matrix B. We can square it, yielding
B2, then square that, yielding B4. Two more squarings then give us B8

and B16. That would be only four matrix-multiply operations, instead of
15. In general, for power 2m, we need m steps.

In our graph connectivity setting, we need power n − 1, but we might as
well go for power

2dlog2 n−1e (12.21)

12.6.3 Parallel Computation

Any parallel vehicle for matrix multiplication could be used for computing
the matrix powers, e.g. OpenBLAS or GPUs. In addition, my CRAN
package matpow, described in the next section, can be used to facilitate
the process.

By the way, one of this book’s internal reviewers raised the following ques-
tion: The matrix A likely can be diagonalized, i.e., a matrix C can be found
such that

A = C−1DC (12.22)

where D is a diagonal matrix whose elements are the eigenvalues of A
(Appendix A). Then

Ak = C−1DkC (12.23)

12.7. SOLVING SYSTEMS OF LINEAR EQUATIONS 267

The matrix Dk is trivial to compute. So, if one has a parallel method for
finding the eigenvalues of a matrix (which also gives us C), then this would
be another parallel method for computing Ak.

However, the finding of eigenvalues is not an embarrassingly parallel oper-
ation. And in our graph connectivity application, we need exact numbers,
without roundoff.

Actually, one method for computing eigenvalues does involve matrix powers.

12.6.4 The matpow Package

My matrix-powers computation package with Jack Norman, matpow, on
CRAN, enables flexible, convenient calculation of matrix powers.

12.6.4.1 Features

The matpow package is flexible, in two important aspects:

• A user-supplied callback function can be specified, which enables ap-
plication specific actions to be performed at the end of each iteration.
For instance, if one is using the power method to find eigenvalues, one
can check for convergence after each iteration, and end the iteration
process if convergence has been reached.

• Any kind of matrix class/multiplication type can be accommodated—
the built-in R ”matrix” class, GPU multiplication and so on. This
means we can easily parallelize the calculation of matrix powers.

12.7 Solving Systems of Linear Equations

Suppose we have a system of equations

ai1x1 + ...+ ai,nxn = bi, i = 1, ..., n, (12.24)

where the xi are the unknowns to be solved for. Such systems occur often in
data science, such as in linear regression analysis, computation of Maximum
Likelihood Estimates, and so on.

268 CHAPTER 12. MATRIX OPERATIONS

As you know, this system can be represented compactly as

Ax = b, (12.25)

where A is n× n, with elements aij , and x and b ares n× 1, with elements
bi.

In principle, we can find x simply by computing A−1b. However, we need
to consider aspects such as numerical accuracy and the degree to which our
methods are “embarrassingly parallel” (or not).

12.7.1 The Classical Approach: Gaussian Elimination
and the LU Decomposition

Form the n× (n+ 1) matrix C = (A|b) by appending the column vector b
to the right of A. Then we work on the rows of C, with the pseudocode for
the sequential case in the most basic version being

for i i = 1 to n
d iv id e row i i by c [i i] [i i]
for r = 1 to n , r != i i

r e p l a c e row r by row r − c [r] [i i] t imes row i i

In the divide operation in the above pseudocode, cii might be 0, or close
to 0. In that case, a pivoting operation is performed (not shown in the
pseudocode): that row is first swapped with another one further down.

This transforms C to reduced row echelon form, in which A is now the
identity matrix I and b is now our solution vector x. (If we had done any
pivoting, we must rearrange b to the original ordering.)

An important variation is to transform only to row echelon form. This
means that C ends up in upper triangular form, with all the elements cij
with i > j being 0, and with all diagonal elements being equal to 1. Here
is the pseudocode:

for i i = 1 to n
d iv id e row i i by c [i i] [i i]
for r = i i +1 to n // vacuous i f r = n−1

r e p l a c e row r by row r − c [r] [i i] t imes row i i

This corresponds to a new set of equations,

12.7. SOLVING SYSTEMS OF LINEAR EQUATIONS 269

c11x1 + c11x1 + c22x2 + ...+ c1,nxn = b1

c11x1 + c22x2 + ...+ c1,nxn = b1

c22x2 + ...+ c2,nxn = b2

...

cn,nxn = bn

We then find the xi via back substitution:

x [n] = b [n] / c [n , n]
for i = n−1 downto 1

x [i] =
(b [i]−c [i] [n−1]∗x [n−1]−...−c [i] [i +1]∗x [i +1])/c [i] [i]

Finding the row echelon form is related to the famous LU decomposition,
which writes A as

A = LU

where L and U are lower- and upper-triangular matrices, respectively. One
can find the inverses of L and U via back substitution, and then get

A−1 = U−1L−1 (12.26)

At present, R uses this method for its solve() function, which (by the user’s
choice) either solves Ax = b or simply finds A−1.

All in all, row echelon form should save us some work, as we don’t have
to repeatedly work on the upper rows of the matrix as in the reduced row
echelon form.

With pivoting, the numerical stability with either form is good. But what
about parallelizability? This is easy in the reduced row echelon form, as we
can statically assign a group of rows to each thread. But in the row echelon
form, we have fewer and fewer rows to process as time goes on, making it
harder to keep all the threads busy.

270 CHAPTER 12. MATRIX OPERATIONS

12.7.2 The Jacobi Algorithm

One can rewrite (12.24) as

xi =
1

aii
[bi−(ai1x1 + ...+ai,i−1xi−1 +ai,i+1xi+1 + ...+ai,nxn)], i = 1, ..., n.

(12.27)

This suggests a natural iterative algorithm for solving the equations: We
start with our guess being, say, xi = bi for all i. At our kth iteration, we
find our (k+1)st guess by plugging in our kth guess into the right-hand side
of (12.27). We keep iterating until the difference between successive guesses
is small enough to indicate convergence.

This algorithm is guaranteed to converge if each diagonal element of A is
larger in absolute value than the sum of the absolute values of the other
elements in its row. But it should work well if our initial guess is near the
true value of x.

That last condition may seem unrealistic, but in data science we have many
iterative algorithms that require a matrix inversion (or equivalent) at each
iteration, such as generalized linear models (glm() in R), multiparameter
Maximum Likelihood Estimation and so on. Jacobi may work well here for
updating the matrix inverse from one iteration to the next.

12.7.2.1 Parallelization

Parallelizing of this algorithm is easy: Just assign each process to handle
a section of x = (x0, x1, ..., xn−1). Note that this means that each process
must make sure that all other processes get the new value of its section
after every iteration.

To parallelize this algorithm, note that in matrix terms (12.27) can be
expressed as

x(k+1) = D−1(b−Ox(k)) (12.28)

where D is the diagonal matrix consisting of the diagonal elements of A
(so its inverse is just the diagonal matrix consisting of the reciprocals of
those elements), O is the square matrix obtained by replacing A’s diago-
nal elements by 0s, and x(i) is our guess for x in the ith iteration. This

12.7. SOLVING SYSTEMS OF LINEAR EQUATIONS 271

reduces the problem to one of matrix multiplication, and thus we can par-
allelize the Jacobi algorithm by utilizing a method for doing parallel matrix
multiplication.

12.7.3 Example: R/gputools Implementation of Ja-
cobi

Here’s the R code, using gputools:

j cb <− function (a , b , eps) {
n <− length (b)
d <− diag (a) # a vector , not a matrix
tmp <− diag (d) # a matrix , not a v e c t o r
o <− a − diag (d)
d i <− 1/d
x <− b # i n i t i a l guess , cou ld be b e t t e r
repeat {

oldx <− x
tmp <− gpuMatMult (o , x)
tmp <− b − tmp
x <− di ∗ tmp # elementwise m u l t i p l i c a t i o n
i f (sum(abs (x−oldx)) < n ∗ eps) return (x)

}
}

12.7.4 QR Decomposition

The famous QR decomposition factors our matrix A as

A = QR

where Q and R are orthogonal and upper-triangular matrices, respectively
(Section A.5). This is a favored method for linear regression and eigenvalue
problems, due to its numerical stability and serial speed; depending on what
quantities are computed, in some problems its time complexity is O(n2)
rather than O(n3) as in Gaussian elimination, for example.

However, it is difficult to parallelize. Nevertheless, it is the method used in
gputools’ function gpuSolve(), the analog of solve() from base R.

272 CHAPTER 12. MATRIX OPERATIONS

12.7.5 Some Timing Results

R’s solve() function, as noted earlier, uses LU decomposition. Timing
experiments were run with different numbers of threads, with OpenBLAS
as the BLAS library. For comparison, solve() was run with R’s built-in
BLAS, and using the gpuSolve() function in gputools. The same quad-
core machine with a hyperthreading degree of 2 as described above was
used.

Here are the results, for a random 4000× 4000 matrix:

platform time

built-in BLAS 107.408
GPU 78.061

OpenBLAS, 1 thread 6.612
OpenBLAS, 2 threads 3.593
OpenBLAS, 4 threads 2.087
OpenBLAS, 6 threads 2.493
OpenBLAS, 8 threads 2.993

This is rather startling! Not only is OpenBLAS the clear champion here,
but in particular it bests the GPU. The latter is substantially better than
plain R, yes, but nowhere near what OpenBLAS gives us—even with just
one thread. GPUs are invaluable for embarrassingly parallel problems, but
obtaining excellent gains in other problems is difficult.

Also interesting is the pattern with respect to the number of threads. Af-
ter moving past four threads, performance deteriorated. This pattern was
confirmed in repeated trials, not shown here. This is not too surprising, as
there are only four actual cores on the machine, even though each one has
some limited ability to run two threads at once. To pursue this idea, these
experiments were run on the 16-core machine, again with a hyperthreading
degree of 2. Again performance appeared to saturate at about 16 cores.

12.8 Sparse Matrices

As mentioned earlier, in many parallel processing applications of linear
algebra, the matrices can be huge, even having millions of rows or columns.
However, in many such cases, most of the matrix consists of 0s.

12.8. SPARSE MATRICES 273

This is quite common in data science applications. A good example is
market basket data. Say we have n transactions, in each of which the
consumer purchases one of more items among the s that the vendor has for
sale. Each of the n records in the input file consists of a list of the items
purchased, with each item coded by an ID in the range of 1 to s.

For various statistical/machine learning methods, we may wish to convert
this data to an n× s matrix, filled with 0s and 1s. A 1 in row i, column j
would indicate that item j was among those purchased in transaction i.

If there are an average of v items per transaction, then a proportion v/s of
the matrix elements will be 1s. This figure is typically small, so our matrix
will indeed be sparse.

In an effort to save memory, one can store sparse matrices in compressed
form, storing only the nonzero elements. Sparse matrices roughly fall into
two categories. In the first category, the matrices all have 0s at the same
known positions. For instance, in tridiagonal matrices, the only nonzero
elements are either on the diagonal or on subdiagonals just below or above
the diagonal, and all other elements are guaranteed to be 0, such as


2 0 0 0 0
1 1 8 0 0
0 1 5 8 0
0 0 0 8 8
0 0 0 3 5

 (12.29)

Code to deal with such matrices can then access the nonzero elements based
on this knowledge.

In the second category, each matrix that our code handles will typically
have its nonzero entries in different, “random,” positions, as in the market
basket example. A number of methods have been developed for storing
amorphous sparse matrices, such as the Compressed Sparse Row format,
which we’ll code in this C struct, representing an m× n matrix A, with k
nonzero entries, for concrete illustration:

struct {

int m,n; // numbers of rows and columns of A

// the nonzero values of A, in row-major order

float *avals;

int *cols; // avals[i] is in column cols[i] in A; length k

int *rowplaces; // rowplaces[i] is the index in avals for

// the 1st nonzero element of row i in A

// (but the last element is k)

}

274 CHAPTER 12. MATRIX OPERATIONS

Since we’re expressing matters in C, our row and column indices will begin
at 0.

For the matrix in (12.29) (if we were not to exploit its tridiagonal nature,
and just treat it as amorphous):

• m,n: 5,5

• avals: 2,1,1,8,1,5,8,8,8,3,5

• cols: 0,0,1,2,1,2,3,3,4,3,4

• rowplaces: 0,1,4,7,9,11

For instance, look at the 4 in rowplaces. It’s at position 2 in that array,
so it says that element 4 in avals—the third 1—is the first nonzero element
in row 2 of A. Look at the matrix, and you’ll see this is true.

Parallelizing operations for a sparse matrix A can be done in the usual
manner, e.g. breaking the rows of A into chunks. Note, though, that there
could be a load-balance issue, again addressable in ways we’ve used before.

Note that large sparse matrices may not need parallel computation in the
first place, as the computation time depends on the number of nonzero
elements, which may be manageable serially. On the other hand, keep in
mind that if we multiply sparse matrices, the result may NOT be sparse,
especially after doing several cumulative products, say with matrix powers.

As usual, one should search for good libraries first. There is PSBLAS, for
instance, a version of BLAS for sparse matrices, running on top of MPI.
For GPUs, there is the CUSP library.

Chapter 13

Inherently Statistical
Approaches: Subset
Methods

A recurrent theme in this book has been that it is easy to speed up embar-
rassingly parallel (EP) applications, but the rest can be quite a challenge.
Fortunately, there exist methods for converting many non-EP statistical
problems to EP ones that are equivalent or reasonable substitutes.

I call this software alchemy. Such methods will be presented in this chapter,
with the main focus being on one method in particular, Chunk Averaging
(CA). Brief overviews will also be given of two other methods.

Let’s set some notation. It will be helpful to have at hand the concept of a
“typical rectangular data matrix,” with n rows, i.e., n observations, and p
columns, that is, p variables. Also, suppose we are estimating a population
parameter θ, possibly vector-valued. Our estimator for the full data set is
denoted by θ̂, which we will often call the “full estimator.”

13.1 Chunk Averaging

CA has been treated in specialized form by various authors since 1999. The
general form presented here is adapted from my own research, Software
Alchemy: Turning Complex Statistical Computations into Embarrassingly-

275

276 CHAPTER 13. SUBSET METHODS

Parallel Ones, Norman Matloff, http://arxiv.org/abs/1409.5827

CA is quite simple: Say θ̂ is generated by applying a function g() to our
data. For instance, g() could be R’s glm() function, computing a vector
of estimated coefficients in logistic regression. Then, the steps of CA are
the following:

(a) Break the data into r chunks of rows. The first k = n/r observations
comprise the first chunk, the next k observations form the second
chunk, and so on.

(b) Apply g() to each chunk.

(c) Average the r results obtained in Step (b), thus producing our CA

estimator θ̃ of θ.

Note that typically the result of g() is a vector, so that we are averaging
vectors in Step (c).

If n is not evenly divisible by r, we can take a weighted average, with
weights proportional to the chunk sizes. Specifically, let ni denote the size
of chunk i, and let θ̂i be the estimate of θ on that chunk. Then the CA
estimator is

θ̃ =

r∑
i=1

ni
n
θ̂i (13.1)

It is assumed that the observations are i.i.d. Then the chunks are i.i.d.
as well, so one can also obtain the standard error, or more generally, an
estimated covariance matrix. Let Vi be that matrix for chunk i (obtained

from the output of g()). Then the estimated covariance matrix for θ̃ is

r∑
i=1

(
ni
n

)2 Vi (13.2)

Like many procedures in statistics, this one has a tuning parameter: r, the
number of groups.

13.1.1 Asymptotic Equivalence

Chunking is of course a time-honored method for parallelization, as we’ve
seen throughout this book. But what makes CA different is that it is

13.1. CHUNK AVERAGING 277

statistical in nature, and its usefulness derives from the fact that the CA
estimator θ̃ is statistically equivalent to the full estimator θ̂.

It is easily proven that if the data are i.i.d. and the full estimator is
asymptotically multivariate normal, then the CA method again produces an
asymptotically multivariate normal estimator. And most importantly,
the chunked estimator has the same asymptotic covariance matrix as the
original nonchunked one.

This last statement, coupled with the fact that Step (b) is an embarrassingly
parallel operation, implies that CA does indeed perform software alchemy—
it turns a non-EP problem into a statistically equivalent EP one.

13.1.2 O(·) Analysis

Suppose the work associated with computing θ̂ is O(nc), such as the O(n2)
figure for our mutual outlinks example (Section 2.9). If the r chunks are
handled in parallel, CA reduces the time complexity of an O(nc) problem to
roughly O(nc/rc) for a statistically equivalent problem, whereas a speedup
that is linear in r would only reduce the time to O(nc/r).

If c > 1, then the speedup obtained from CA is greater than linear in
r, which is called superlinear. This is a term from the general parallel
processing field. When this occurs generally, the size of the effect is usually
small, and is due to cache effects and the like. But in our statistical context,
superlinearity will be commonplace, often with very large effects.

By the way, a similar analysis shows that CA can yield speedup even in the
serial case, in which the chunks are handled one at a time. The time here
will be r O(n

c

rc) = O(nc

rc−1). So, for c > 1, CA may be faster than the full
estimator even in uniprocessor settings.

Note too that CA can be helpful even in EP settings. Say our function g()
is part of an existing software package. Even if the underlying algorithm
is EP, recoding it for parallelization may be an elaborate undertaking. CA
then gives us a quick, simple way to exploit the EP nature of the estimator.
This will be illustrated in Section 13.1.4.3.

For some applications, though, our speedup may be more modest. As dis-
cussed in Section 3.4.1, linear (or nonlinear but still parametric) regression
models present challenges. We’ll see an example later in this section.

278 CHAPTER 13. SUBSET METHODS

13.1.3 Code

Coding CA is a straightforward implementation of (13.1) and (13.2). It is
available as the ca() function in my CRAN package, partools.

13.1.4 Timing Experiments

Let’s look at speedups in a few examples.

13.1.4.1 Example: Quantile Regression

Here I used the quantreg package from CRAN in simulation experiments.
There were m predictors, i.i.d. U(0,1), with the response being generated
by

Y = X1 + ...+Xm + 0.2 U

with U again having a U(0,1) distribution. Sample sizes n were 25000 and
50000, with m = 75. Up to 32 threads were tried, on the machine described
in the preface of this book.

The results, shown in Figure 13.1, are very illuminating. Strong speedups
were obtained, especially in the case n = 50000, where the gain was su-
perlinear. There seems to be no performance gain, and possibly even some
decline, once we exceed 16 threads. Recall that this machine has 16 cores,
though with hyperthreading degree 2, thus some potential for performance
gain after 16 threads, but this was not observed in this application.

13.1.4.2 Example: Logistic Model

The data set here is the famous forest groundcover data from the University
of California, Irvine Machine Learning Repository. Here we have seven
different kinds of ground cover, with covariates such as Hillside Shade at
Noon. The goal is to predict the type of ground cover based on remote
sensing of the covariates. There are 500000 observations in the subset of
the data analyzed here..

The timing experiments involved predicting Cover Type 1 from the first 10
covariates. Here is the code and timing results for the full data set:1

1Since the raw data is ordered, a random permutation is applied.

13.1. CHUNK AVERAGING 279

Figure 13.1: CA Performance, Quantile Regression

> f o r e s t <− read . csv (” covtype . data ”)
dummy f o r Type 1
> f o r e s t <− cbind (as . integer (f o r e s t [,55]==1) , f o r e s t)
> f o r e s t <− as . matrix (f o r e s t)
> nr f <− nrow(f o r e s t)
> f o r e s t <− f o r e s t [sample (1 : nrf , nr f , replace=F) ,]
> system . time (g1 <− glm(f o r e s t [, 1] ˜ f o r e s t [, 2 : 1 1] ,

family=binomial))
user system e lapsed

40 .174 1 .754 41 .977

Now compare that 41.977-second time to those obtained with CA run on
the 16-core machine mentioned earlier, with 2, 4, 8, 12 and 16 threads,

280 CHAPTER 13. SUBSET METHODS

Figure 13.2: CA Performance, Forest Data

as seen in Figure 13.2. The speedup starts out linear, then becomes less
dramatic but still quite good, especially in light of the factors mentioned
earlier.

But what about the accuracy? The theory tells us that the CA estimator
is statistically equivalent to the full estimator, but this is based on asymp-
totics. (Though it should be noted that even the full estimator is based on
asymptotics, since glm() itself is so.) Let’s see how well it worked here.
Table 13.1 shows the values of the estimated coefficient for the first pre-
dictor variable, for the different numbers of cores (1 core again means the
full-estimator case):

This is excellent agreement, even for the smallest chunk size.

13.1. CHUNK AVERAGING 281

cores β̂1
1 0.006424
2 0.006424
4 0.006424
8 0.006426

12 0.006427
16 0.006427

Table 13.1: Coefficient Estimates

13.1.4.3 Example: Estimating Hazard Functions

For a continuous distribution with density f and cdf F , the hazard function
is defined as

h(t) =
f(t)

1− F (t)

The muhaz package on CRAN finds nonparametric estimates of h, for
either censored or uncensored data. A variety of methods is offered, with
the one used here employing kernel-based density estimation, with local
bandwidth determination. The details are well beyond the scope of this
book, but think of a histogram with varying bin widths, with the width
of any particular bin being determined by the estimated characteristics of
the density function in that region. Putting technical details aside, the
key points are that (a) there is lots of computation to do and (b) the
computation is embarrassingly parallel (in the uncensored case, which we
have here).

At first, one might guess that since this procedure is embarrassingly parallel,
we don’t need CA. The latter method, after all, is aimed at converting non-
EP problems to EP ones—so why use it on a problem that is already EP?

The answer is convenience. It would likely be quite inconvenient to rewrite
the muhaz package for parallel computation. By contrast, if we apply CA
to muhaz, we attain EP speed without any recoding.

So, let’s see how well it does. The data set used was another famous one,
the flight delay data, at http://stat-computing.org/dataexpo/2009/

282 CHAPTER 13. SUBSET METHODS

the-data.html. The hazard function was estimated on the variable De-
pDelay (departure delay). NA values were removed from the data first.
Here is the result for the full estimator:

> x <− read . csv (” 2008.500 k . csv ” , header=T)
> depdelay <− x$DepDelay
> depdelay <− depdelay [! i s . na(depdelay)]
> l ibrary (muhaz)
> system . time (mhout <− muhaz(depdelay))

user system e lapsed
95 .365 0 .220 95 .612

Then CA was tried, with 8 nodes:

> l ibrary (p a r a l l e l)
> c l s <− makeCluster (8)
> c l u s t e r C a l l (c l s , function () l ibrary (muhaz))
. . .
> source (”˜/ChunkAveraging .R”)
> system . time (
+ mhoutca <− ca (c l s , depdelay ,
+ ovf=function (zchunk) muhaz(zchunk)$haz . e s t [2 0] ,
+ e s t f=function (estoutchunk) estoutchunk)
+)

user system e lapsed
0 .244 0 .020 14 .418

Nice results, almost a seven-fold speedup.

13.1.5 Non-i.i.d. Settings

As noted, the usesfulness of CA stems from the statistical equivalence of θ̃
and θ̂. This in turn stems from the i.i.d. nature of our data. What about
other settings?

The i.i.d. assumption is central to most of statistics. One seldom sees dis-
cussion of the implications of that assumption for day-to-day data analysis,
but for CA there is an important reason to bring it up: For many data sets,
the physical storage has been ordered in some way.

For example, suppose in a certain data set one of the variables is gender,
say consisting of 5000 men and 5000 women. The data file may have been
arranged so that the first 5000 records consist of the men and the second

13.2. BAG OF LITTLE BOOTSTRAPS 283

5000 contain the data for the women. Suppose r = 2. Then the distribution
in the first chunk is different from that of the second, i.e., the chunks are
not identically distributed, and the CA theory doesn’t hold.

Thus, if the analyst knows or suspects that the arrangement of the data is
ordered in some way, he/she should first apply a random permutation to
the n records. If the matrix x contains the original data, then one might
run, say

x <− x [sample (1 : n , n , replace=FALSE) ,]

13.2 Bag of Little Bootstraps

This intriguing method, the Bag of Little Bootstraps (BLB), is described in
A Scalable Bootstrap for Massive Data, A. Kleiner, A. Talwalkar, P. Sarkar,
M.I. Jordan, Journal of the Royal Statistical Society, Series B, 2013. To
my knowledge, there is no publicly available code implementing BLB, and
only an overview of the procedure will be presented here. (It is presumed
that the reader has some familiarity with bootstrap methods.)

In BLB, one also looks at chunks of the data, as in the CA method, but the
chunks are chosen randomly. We select s chunks of size b. For each chunk,
we apply the standard bootstrap, taking r samples (with replacement) of
size b. We then average over all chunks. As with CA, the authors prove that
for i.i.d. data, BLB produces an estimator that is asymptotically equivalent
to θ̂.

BLB has three tuning parameters: b, s and r. The above paper contains
suggestions as to how to choose the values of these parameters.

13.3 Subsetting Variables

Consider a regression or classification setting. Instead of subsetting obser-
vations, i.e., rows of the data matrix, we might consider subsetting predictor
variables, i.e., columns of the matrix. This a form of what is called boosting.

Say for example we have 50 predictor variables and we wish to do prediction
of a binary outcome Y using a logistic regression model, via R’s glm()
function. Instead of one single call to glm() using all 50 predictors, and
then applying the result to predict the Y values for whatever new data we
encounter in the future, we might randomly select k pairs of predictors, and

284 CHAPTER 13. SUBSET METHODS

apply glm() to each pair of predictors. Then for each future data point,
we would generate k predictions for that point, and simply use a majority
rule to predict the new Y value. For instance, if the majority of our k
predictions guess the new Y to be 1, then that would be our overall guess.
Instead of using just pairs of predictors, we might use triples, or in general,
m predictors for each small model fitted.

The motivation generally put forth for this approach is Richard Bellman’s
notion of the curse of dimensionality, which asserts that prediction be-
comes inordinately difficult in very high dimensions, that is with a very
large number of predictors. We try to circumvent this by combining many
predictions, each one in a low-dimensional space.

However, in our context here, one can view the above boosting method
as a way to parallelize our operations. Consider linear regression analysis,
for example, with p predictors. As discussed in Section 3.4.1, for fixed
sample size, the work needed is O(p3), or O(p2), depending on the numerical
method used. This time complexity grows more than linearly with p, so
boosting may save us computation time. This is especially true since we fit
our k models in parallel, an embarrassingly parallel setting.

Note that unlike the CA and BLB methods, boosting does not yield a
statistically equivalent estimator. But it does save us time (and may reduce
the chance of overfitting, accordingly to proponents).

This method has two tuning parameters: k and m.

Appendix A

Review of Matrix Algebra

This book assumes the reader has had a course in linear algebra (or has
self-studied it, always the better approach). This appendix is intended as a
review of basic matrix algebra, or a quick treatment for those lacking this
background.

A.1 Terminology and Notation

A matrix is a rectangular array of numbers. A vector is a matrix with
only one row (a row vector or only one column (a column vector).

The expression, “the (i,j) element of a matrix,” will mean its element in
row i, column j.

Please note the following conventions:

• Capital letters, e.g. A and X, will be used to denote matrices and
vectors.

• Lower-case letters with subscripts, e.g. a2,15 and x8, will be used to
denote their elements.

• Capital letters with subscripts, e.g. A13, will be used to denote sub-
matrices and subvectors.

If A is a square matrix, i.e., one with equal numbers n of rows and columns,
then its diagonal elements are aii, i = 1,...,n.

285

286 APPENDIX A. MATRIX REVIEW

A square matrix is called upper-triangular if aij = 0 whenever i > j,
with a corresponding definition for lower-triangular matrices.

The norm (or length) of an n-element vector X is

‖ X ‖=

√√√√ n∑
i=1

x2i (A.1)

A.1.1 Matrix Addition and Multiplication

• For two matrices have the same numbers of rows and same numbers
of columns, addition is defined elementwise, e.g.

 1 5
0 3
4 8

+

 6 2
0 1
4 0

 =

 7 7
0 4
8 8

 (A.2)

• Multiplication of a matrix by a scalar, i.e., a number, is also defined
elementwise, e.g.

0.4

 7 7
0 4
8 8

 =

 2.8 2.8
0 1.6

3.2 3.2

 (A.3)

• The inner product or dot product of equal-length vectors X and
Y is defined to be

n∑
k=1

xkyk (A.4)

• The product of matrices A and B is defined if the number of rows
of B equals the number of columns of A (A and B are said to be
conformable). In that case, the (i,j) element of the product C is
defined to be

cij =

n∑
k=1

aikbkj (A.5)

A.2. MATRIX TRANSPOSE 287

For instance,  7 6
0 4
8 8

(1 6
2 4

)
=

 19 66
8 16
24 80

 (A.6)

It is helpful to visualize cij as the inner product of row i of A and
column j of B, e.g. as shown in bold face here: 7 6

0 4
8 8

(1 6
2 4

)
=

 19 66
8 16
24 80

 (A.7)

• Matrix multiplication is associative and distributive, but in general
not commutative:

A(BC) = (AB)C (A.8)

A(B + C) = AB +AC (A.9)

AB 6= BA (A.10)

A.2 Matrix Transpose

• The transpose of a matrix A, denoted A′ or AT , is obtained by ex-
changing the rows and columns of A, e.g.

 7 70
8 16
8 80

′ =

(
7 8 8
70 16 80

)
(A.11)

• If A+B is defined, then

(A+B)′ = A′ +B′ (A.12)

• If A and B are conformable, then

(AB)′ = B′A′ (A.13)

288 APPENDIX A. MATRIX REVIEW

A.3 Linear Independence

Equal-length vectors X1,...,Xk are said to be linearly independent if it
is impossible for

a1X1 + ...+ akXk = 0 (A.14)

unless all the ai are 0.

A.4 Determinants

Let A be an n× n matrix. The definition of the determinant of A, det(A),
involves an abstract formula featuring permutations. It will be omitted
here, in favor of the following computational method.

Let A−(i,j) denote the submatrix of A obtained by deleting its ith row and

jth column. Then the determinant can be computed recursively across the
kth row of A as

det(A) =

n∑
m=1

(−1)k+mdet(A−(k,m)) (A.15)

where

det

(
s t
u v

)
= sv − tu (A.16)

Generally, determinants are mainly of theoretical importance, but they
often can clarify one’s understanding of concepts.

A.5 Matrix Inverse

• The identity matrix I of size n has 1s in all of its diagonal elements
but 0s in all off-diagonal elements. It has the property that AI = A
and IA = A whenever those products are defined.

• The A is a square matrix and AB = I, then B is said to be the
inverse of A, denoted A−1. Then BA = I will hold as well.

A.6. EIGENVALUES AND EIGENVECTORS 289

• A−1 exists if and only if its rows (or columns) are linearly indepen-
dent.

• A−1 exists if and only if det(A) 6= 0.

• If A and B are square, conformable and invertible, then AB is also
invertible, and

(AB)−1 = B−1A−1 (A.17)

A matrix U is said to be orthogonal if its rows each have norm 1 and
are orthogonal to each other, i.e., their inner product is 0. U thus has the
property that UU ′ = I i.e., U−1 = U .

The inverse of a triangular matrix is easily obtained by something called
back substitution.

Typically one does not compute matrix inverses directly. A common al-
ternative is the QR decomposition: For a matrix A, matrices Q and R
are calculated so that A = QR, where Q is an orthogonal matrix and R is
upper-triangular.

If A is square and invertible, A−1 is easily found:

A−1 = (QR)−1 = R−1Q′ (A.18)

Again, though, in some cases A is part of a more complex system, and the
inverse is not explicitly computed.

A.6 Eigenvalues and Eigenvectors

Let A be a square matrix.1

• A scalar λ and a nonzero vector X that satisfy

AX = λX (A.19)

are called an eigenvalue and eigenvector of A, respectively.

1For nonsquare matrices, the discussion here would generalize to the topic of singular
value decomposition.

290 APPENDIX A. MATRIX REVIEW

• If A is symmetric and real, then it is diagonalizable, i.e., there exists
an orthogonal matrix U such that

U ′AU = D (A.20)

for a diagonal matrix D. The elements of D are the eigenvalues of A,
and the columns of U are the eigenvectors of A.

A different sufficient condition for A.20 is that the eigenvalues of A
are distinct. In this case, U will not necessarily be orthogonal.

By the way, this latter sufficient condition shows that “most” square
matrices are diagonalizable, if we treat their entries as continuous ran-
dom variables. Under such a circumstance, the probability of having
repeated eigenvalues would be 0.

A.7 Matrix Algebra in R

The R programming language has extensive facilities for matrix algebra,
introduced here. Note by the way that R uses column-major order.

A linear algebra vector can be formed as an R vector, or as a one-row or
one-column matrix.

> # c o n s t r u c t i n g matr ices
> a <− rbind (1 : 3 , 1 0 : 1 2)
> a

[, 1] [, 2] [, 3]
[1 ,] 1 2 3
[2 ,] 10 11 12
> b <− matrix (1 : 9 , ncol=3)
> b

[, 1] [, 2] [, 3]
[1 ,] 1 4 7
[2 ,] 2 5 8
[3 ,] 3 6 9

m u l t i p l i c a t i o n , e t c .
> c <− a %∗% b ; c + matrix (c (1 , −1 ,0 ,0 ,3 ,8) ,nrow=2)

[, 1] [, 2] [, 3]
[1 ,] 15 32 53
[2 ,] 67 167 274
> c %∗% c (1 , 5 , 6) # note 2 d i f f e r e n t c ’ s

[, 1]

A.7. MATRIX ALGEBRA IN R 291

[1 ,] 474
> # transpose , i n v e r s e
> t (a) # t ran spos e

[, 1] [, 2]
[1 ,] 1 10
[2 ,] 2 11
[3 ,] 3 12
> u <− matrix (runif (9) ,nrow=3)
> u

[, 1] [, 2] [, 3]
[1 ,] 0 .08446154 0.86335270 0.6962092
[2 ,] 0 .31174324 0.35352138 0.7310355
[3 ,] 0 .56182226 0.02375487 0.2950227
> uinv

[, 1] [, 2] [, 3]
[1 ,] 0 .5818482 −1.594123 2.576995
[2 ,] 2 .1333965 −2.451237 1.039415
[3 ,] −1.2798127 3.233115 −1.601586
> u %∗% uinv # note roundo f f e r r or

[, 1] [, 2] [, 3]
[1 ,] 1 .000000 e+00 −1.680513e−16 −2.283330e−16
[2 ,] 6 .651580 e−17 1.000000 e+00 4.412703 e−17
[3 ,] 2 .287667 e−17 −3.539920e−17 1.000000 e+00
> # e i g e n v a l u e s and e i g e n v e c t o r s
> eigen (u)
$va lue s
[1] 1.2456220+0.0000000 i −0.2563082+0.2329172 i
−0.2563082−0.2329172 i

$ v ec to r s
[, 1] [, 2]

[, 3]
[1 ,] −0.6901599+0 i −0.6537478+0.0000000 i
−0.6537478+0.0000000 i
[2 ,] −0.5874584+0 i −0.1989163−0.3827132 i
−0.1989163+0.3827132 i
[3 ,] −0.4225778+0 i 0.5666579+0.2558820 i
0.5666579−0.2558820 i
> # d i a g o n a l matr ices (o f f−d i a g o n a l s 0)
> diag (3)

[, 1] [, 2] [, 3]
[1 ,] 1 0 0
[2 ,] 0 1 0

292 APPENDIX A. MATRIX REVIEW

[3 ,] 0 0 1
> diag ((c (5 , 1 2 , 1 3)))

[, 1] [, 2] [, 3]
[1 ,] 5 0 0
[2 ,] 0 12 0
[3 ,] 0 0 13

Appendix B

R Quick Start

Here we present a quick introduction to the R data/statistical programming
language. Further learning resources are listed at http://heather.cs.

ucdavis.edu/~/matloff/r.html.

R syntax is similar to that of C. It is object-oriented (in the sense of encap-
sulation, polymorphism and everything being an object) and is a functional
language (i.e., almost no side effects, every action is a function call, etc.).

B.1 Correspondences

aspect C/C++ R

assignment = <- (or =)
array terminology array vector, matrix, array
subscripts start at 0 start at 1
array notation m[2][3] m[2,3]
2-D array storage row-major order column-major order
mixed container struct list
return mechanism return return() or last value comp.
logical values true, false TRUE, FALSE
combining modules include, link library()
run method batch interactive, batch

293

294 APPENDIX B. R QUICK START

B.2 Starting R

To invoke R, just type “R” into a terminal window. On a Windows machine,
you probably have an R icon to click.

If you prefer to run from an IDE, you may wish to consider ESS for Emacs,
StatET for Eclipse or RStudio, all open source. ESS is the favorite among
the “hard core coder” types, while the colorful, easy-to-use, RStudio is a
big general crowd pleaser. If you are already an Eclipse user, StatET will
be just what you need.

R is normally run in interactive mode, with > as the prompt. Among other
things, that makes it easy to try little experiments to learn from; remember
my slogan, “When in doubt, try it out!”

B.3 First Sample Programming Session

Below is a commented R session, to introduce the concepts. I had a text
editor open in another window, constantly changing my code, then loading
it via R’s source() command. The original contents of the file odd.R
were:

oddcount <− function (x) {
k <− 0 # a s s i g n 0 to k
for (n in x) {

i f (n %% 2 == 1) k <− k+1 # %% i s mod opera tor
}
return (k)

}

By the way, we could have written that last statement as simply

k

because the last computed value of an R function is returned automatically.

The R session is shown below. You may wish to type it yourself as you go
along, trying little experiments of your own along the way.1

> source (”odd .R”) # load code from the g iven f i l e

1The source code for this file is at http://heather.cs.ucdavis.edu/~matloff/

MiscPLN/R5MinIntro.tex. You can download the file, and copy/paste the text from
there.

B.3. FIRST SAMPLE PROGRAMMING SESSION 295

> l s () # what o b j e c t s do we have ?
[1] ”oddcount”

what kind o f o b j e c t i s oddcount ?
> class (oddcount)
[1] ” func t i on ”

w h i l e in i n t e r a c t i v e mode , not i n s i d e a funct ion ,
can p r i n t any o b j e c t by t y p i n g i t s name ; o t h e r w i s e
use p r i n t () , e . g . p r i n t (x+y)
> oddcount # a f u n c t i o n i s an o b j e c t , so can p r i n t
function (x) {

k <− 0 # a s s i g n 0 to k
for (n in x) {

i f (n %% 2 == 1) k <− k+1 # %% i s mod opera tor
}
return (k)

}

t e s t oddcount () , but some t r a i t s o f v e c t o r s f i r s t
> y <− c (5 , 12 , 13 , 8 , 88) # c () i s concatenate
> y
[1] 5 12 13 8 88
> y [2] # R s u b s c r i p t s beg in at 1 , not 0
[1] 12
> y [2 : 4] # e x t r a c t e lements 2 , 3 and 4 o f y
[1] 12 13 8
> y [c (1 , 3 : 5)] # elements 1 , 3 , 4 and 5
[1] 5 13 8 88
> oddcount (y) # shou ld r e p o r t 2 odd numbers
[1] 2

change code (in the o t her window) to v e c t o r i z e
the count op era t ion f o r much f a s t e r e x e c u t i o n
> source (”odd .R”)
> oddcount
function (x) {

x1 <− (x %% 2 == 1)
x1 a v e c t o r o f TRUEs and FALSEs
x2 <− x [x1]
x2 has e lements o f x t h a t were TRUE in x1
return (length (x2))

}

t r y i t on s u b s e t o f y , e lements 2 through 3

296 APPENDIX B. R QUICK START

> oddcount (y [2 : 3])
[1] 1
> # t r y i t on s u b s e t o f y , e lements 2 , 4 and 5
> oddcount (y [c (2 , 4 , 5)])
[1] 0

f u r t h e r compact i fy the code
> source (”odd .R”)
> oddcount
function (x) {

length (x [x %% 2 == 1])
l a s t v a l u e computed i s auto re turned

}
> oddcount (y) # t e s t i t
[1] 2

and even more c o m p a c t i f i c a t i o n , making use o f the
f a c t t h a t TRUE and FALSE are t r e a t e d as 1 and 0
> oddcount <− function (x) sum(x %% 2 == 1)
make sure you understand the s t e p s t h a t t h a t
i n v o l v e s : x i s a vec tor , and thus x %% 2 i s a
new vector , the r e s u l t o f a p p l y i n g the mod 2
o per a t io n to every element o f x ; then
x %% 2 == 1 a p p l i e s the == 1 op era t ion to each
element o f t h a t r e s u l t , y i e l d i n g a new v e c t o r
of TRUE and FALSE v a l u e s ; sum () then adds them
(as 1 s and 0 s)

we can a l s o determine which e lements are odd
> which(y %% 2 == 1)
[1] 1 3

now have f t n re turn odd count AND the odd
numbers themse lves , us ing the R l i s t type
> source (”odd .R”)
> oddcount
function (x) {

x1 <− x [x %% 2 == 1]
return (l i s t (odds=x1 , numodds=length (x1)))

}
R’ s l i s t type can conta in any type ; components
d e l i n e a t e d by $
> oddcount (y)

B.3. FIRST SAMPLE PROGRAMMING SESSION 297

$odds
[1] 5 13

$numodds
[1] 2

save the output in ocy , which w i l l be a l i s t
> ocy <− oddcount (y)
> ocy
$odds
[1] 5 13

$numodds
[1] 2

> ocy$odds
[1] 5 13
> ocy [[1]]
[1] 5 13

can g e t l i s t e lements us ing [[]] i n s t e a d o f $
> ocy [[2]]
[1] 2

Note that the function of the R function function() is to produce functions!
Thus assignment is used. For example, here is what odd.R looked like at
the end of the above session:

oddcount <− function (x) {
x1 <− x [x %% 2 == 1]
return (l i s t (odds=x1 , numodds=length (x1)))

}

We created some code, and then used function() to create a function
object, which we assigned to oddcount.

Note that we eventually vectorized our function oddcount(). This means
taking advantage of the vector-based, functional language nature of R, ex-
ploiting R’s built-in functions instead of loops. This changes the venue
from interpreted R to C level, with a potentially large increase in speed.
For example:

1000000 random numbers from the i n t e r v a l (0 ,1)
> x <− runif (1000000)
> system . time (sum(x))

298 APPENDIX B. R QUICK START

user system e lapsed
0 .008 0 .000 0 .006

> system . time ({ s <− 0 ;
for (i in 1 :1000000) s <− s + x [i] })

user system e lapsed
2 .776 0 .004 2 .859

B.4 Second Sample Programming Session

A matrix is a special case of a vector, with added class attributes, the
numbers of rows and columns.

rowbind () f u n c t i o n combines rows o f matr ices ;
there ’ s a cb ind () f o r columns too
> m1 <− rbind (1 : 2 , c (5 , 8))
> m1

[, 1] [, 2]
[1 ,] 1 2
[2 ,] 5 8
> rbind (m1, c (6 ,−1))

[, 1] [, 2]
[1 ,] 1 2
[2 ,] 5 8
[3 ,] 6 −1

form matrix from 1 ,2 ,3 ,4 ,5 ,6 , in 2 rows ;
R uses column−major s t o r a g e
> m2 <− matrix (1 : 6 ,nrow=2)
> m2

[, 1] [, 2] [, 3]
[1 ,] 1 3 5
[2 ,] 2 4 6
> ncol (m2)
[1] 3
> nrow(m2)
[1] 2
> m2[2 , 3] # e x t r a c t e lement in row 2 , c o l 3
[1] 6

g e t submatr ix o f m2, c o l s 2 and 3 , any row
> m3 <− m2 [, 2 : 3]
> m3

B.4. SECOND SAMPLE PROGRAMMING SESSION 299

[, 1] [, 2]
[1 ,] 3 5
[2 ,] 4 6

> m1 ∗ m3 # elementwise m u l t i p l i c a t i o n
[, 1] [, 2]

[1 ,] 3 10
[2 ,] 20 48
> 2 .5 ∗ m3 # s c a l a r m u l t i p l i c a t i o n (but see be low)

[, 1] [, 2]
[1 ,] 7 . 5 12 .5
[2 ,] 10 .0 15 .0
> m1 %∗% m3 # l i n e a r a l g e b r a matrix m u l t i p l i c a t i o n

[, 1] [, 2]
[1 ,] 11 17
[2 ,] 47 73

matr ices are s p e c i a l cases o f v ec t or s ,
so can t r e a t them as v e c t o r s
> sum(m1)
[1] 16
> i f e l s e (m2 %%3 == 1 ,0 ,m2) # (see be low)

[, 1] [, 2] [, 3]
[1 ,] 0 3 5
[2 ,] 2 0 6

The “scalar multiplication” above is not quite what you may think, even
though the result may be. Here’s why:

In R, scalars don’t really exist; they are just one-element vectors. However,
R usually uses recycling, i.e., replication, to make vector sizes match. In
the example above in which we evaluated the express 2.5 * m3, the number
2.5 was recycled to the matrix

(
2.5 2.5
2.5 2.5

)
(B.1)

in order to conform with m3 for (elementwise) multiplication.

The ifelse() function is another example of vectorization. Its call has the
form

i f e l s e (boolean vec to r expre s s i on1 , vec to r expre s s i on2 ,
v e c t o r e x p r e s s i o n 3)

300 APPENDIX B. R QUICK START

All three vector expressions must be the same length, though R will lengthen
some via recycling. The action will be to return a vector of the same length
(and if matrices are involved, then the result also has the same shape).
Each element of the result will be set to its corresponding element in vec-
torexpression2 or vectorexpression3, depending on whether the corre-
sponding element in vectorexpression1 is TRUE or FALSE.

In our example above,

> i f e l s e (m2 %%3 == 1 ,0 ,m2) # (see be low)

the expression m2 %%3 == 1 evaluated to the boolean matrix

(
T F F
F T F

)
(B.2)

(TRUE and FALSE may be abbreviated to T and F.)

The 0 was recycled to the matrix

(
0 0 0
0 0 0

)
(B.3)

while vectorexpression3, m2, evaluated to itself.

B.5 Third Sample Programming Session

This time, we focus on vectors and matrices.

> m <− rbind (1 : 3 , c (5 , 12 , 13))
> m

[, 1] [, 2] [, 3]
[1 ,] 1 2 3
[2 ,] 5 12 13
> t (m) # t ran spos e

[, 1] [, 2]
[1 ,] 1 5
[2 ,] 2 12
[3 ,] 3 13
> ma <− m[, 1 : 2]
> ma

[, 1] [, 2]

B.6. THE R LIST TYPE 301

[1 ,] 1 2
[2 ,] 5 12
> rep (1 , 2) # ” repeat ,” make m u l t i p l e c o p i e s
[1] 1 1
> ma %∗% rep (1 , 2) # matrix m u l t i p l y

[, 1]
[1 ,] 3
[2 ,] 17
> solve (ma, c (3 , 1 7)) # s o l v e l i n e a r system
[1] 1 1
> solve (ma) # matrix i n v e r s e

[, 1] [, 2]
[1 ,] 6 . 0 −1.0
[2 ,] −2.5 0 .5

B.6 The R List Type

The R list type is, after vectors, the most important R construct. A list is
like a vector, except that the components are generally of mixed types.

B.6.1 The Basics

Here is example usage:

> g <− l i s t (x = 4 : 6 , s = ”abc”)
> g
$x
[1] 4 5 6

$s
[1] ”abc”

> g$x # can r e f e r e n c e by component name
[1] 4 5 6
> g$s
[1] ”abc”

can r e f e r e n c e by index , but note doub le b r a c k e t s
> g [[1]]
[1] 4 5 6
> g [[2]]

302 APPENDIX B. R QUICK START

[1] ”abc”
> for (i in 1 : length (g)) print (g [[i]])
[1] 4 5 6
[1] ”abc”

B.6.2 The Reduce() Function

One often needs to combine elements of a list in some way. One approach
to this is to use Reduce():

> x <− l i s t (4 : 6 , c (1 , 6 , 8))
> x
[[1]]
[1] 4 5 6

[[2]]
[1] 1 6 8

> sum(x)
Error in sum(x) : i n v a l i d ’ type ’ (l i s t) o f argument
> Reduce (sum, x)
[1] 30

Here Reduce() cumulatively applied R’s sum() to x. Of course, you can
use it with functions you write yourself too.

Continuing the above example:

> Reduce (c , x)
[1] 4 5 6 1 6 8

B.6.3 S3 Classes

R is an object-oriented (and functional) language. It features two types of
classes, S3 and S4. I’ll introduce S3 here.

An S3 object is simply a list, with a class name added as an attribute:

> j <− l i s t (name=”Joe” , s a l a r y =55000 , union=T)
> class (j) <− ”employee”
> m <− l i s t (name=”Joe” , s a l a r y =55000 , union=F)
> class (m) <− ”employee”

B.6. THE R LIST TYPE 303

So now we have two objects of a class we’ve chosen to name ”employee”.
Note the quotation marks.

We can write class generic functions:

> print . employee <− function (wrkr) {
+ cat (wrkr$name , ”\n”)
+ cat (” s a l a r y ” , wrkr$ sa la ry , ”\n”)
+ cat (” union member” , wrkr$union , ”\n”)
+ }
> print (j)
Joe
s a l a r y 55000
union member TRUE
> j
Joe
s a l a r y 55000
union member TRUE

What just happened? Well, print() in R is a generic function, meaning
that it is just a placeholder for a function specific to a given class. When we
printed j above, the R interpreter searched for a function print.employee(),
which we had indeed created, and that is what was executed. Lacking this,
R would have used the print function for R lists, as before:

remove the funct ion , to see what happens wi th p r i n t
> rm(print . employee)
> j
$name
[1] ”Joe”

$ s a l a r y
[1] 55000

$union
[1] TRUE

attr (, ” c l a s s ”)
[1] ” employee”

304 APPENDIX B. R QUICK START

B.6.4 Handy Utilities

R functions written by others, e.g. in base R or in the CRAN repository
for user-contributed code, often return values which are class objects. It is
common, for instance, to have lists within lists. In many cases these objects
are quite intricate, and not thoroughly documented. In order to explore the
contents of an object—even one you write yourself—here are some handy
utilities:

• names(): Returns the names of a list.

• str(): Shows the first few elements of each component.

• summary(): General function. The author of a class x can write a
version specific to x, i.e., summary.x(), to print out the important
parts; otherwise the default will print some bare-bones information.

For example:

> z <− l i s t (a = runif (50) ,
b = l i s t (u=sample (1 : 1 0 0 , 2 5) , v=” blue sky”))

> z
$a

[1] 0 .301676229 0.679918518 0.208713522 0.510032893
0.405027042 0.412388038
[7] 0 .900498062 0.119936222 0.154996457 0.251126218
0.928304164 0.979945937

[1 3] 0 .902377363 0.941813898 0.027964137 0.992137908
0.207571134 0.049504986
[1 9] 0 .092011899 0.564024424 0.247162004 0.730086786
0.530251779 0.562163986
[2 5] 0 .360718988 0.392522242 0.830468427 0.883086752
0.009853107 0.148819125
[3 1] 0 .381143870 0.027740959 0.173798926 0.338813042
0.371025885 0.417984331
[3 7] 0 .777219084 0.588650413 0.916212011 0.181104510
0.377617399 0.856198893
[4 3] 0 .629269146 0.921698394 0.878412398 0.771662408
0.595483477 0.940457376
[4 9] 0 .228829858 0.700500359

$b
bu

B.7. DEBUGGING IN R 305

[1] 33 67 32 76 29 3 42 54 97 41 57 87 36 92 81
31 78 12 85 73 26 44

86 40 43

bv
[1] ” blue sky”
> names(z)
[1] ”a” ”b”
> s t r (z)
L i s t o f 2
$ a : num [1 : 5 0] 0 .302 0 .68 0 .209 0 .51 0 .405 . . .
$ b : L i s t o f 2

. . $ u : i n t [1 : 2 5] 33 67 32 76 29 3 42 54 97 41 . . .

. . $ v : chr ” blue sky”
> names(z$b)
[1] ”u” ”v”
> summary(z)

Length Class Mode
a 50 −none− numeric
b 2 −none− l i s t

B.7 Debugging in R

The internal debugging tool in R, debug(), is usable but rather primitive.
Here are some alternatives:

• The RStudio IDE has a built-in debugging tool.

• For Emacs users, there is ess-tracebug.

• The StatET IDE for R on Eclipse has a nice debugging tool. It works
on all major platforms, but can be tricky to install.

• My own debugging tool, debugR, is extensive and easy to install,
but for the time being is limited to Linux, Mac and other Unix-family
systems. See http://heather.cs.ucdavis.edu/debugR.html.

Appendix C

Introduction to C for R
Programmers

The C language is quite complex, and C++ is even more so. The goal of
this appendix is to give a start at a reading ability in the C language for
those familiar with R.

C.0.1 Sample Program

// Learn . c

// inputs 5 numbers from the keyboard ,
// squares and p r i n t s them

// i n c lude d e f i n i t i o n s needed for standard I/O
#include <s t d i o . h>

// f unc t i on to square the e lements o f an array x ,
// o f l ength n , in−p lace ; both arguments are o f
// i n t e g e r
int sqr (int ∗x , int n) {

// a l l o c a t e space for an i n t e g e r i
int i ;
// for loop , i = 0 , 1 , 2 , . . . , n−1
for (i = 0 ; i < n ; i++)

x [i] = x [i] ∗ x [i] ;
}

307

308 APPENDIX C. INTRODUCTION TO C

int main () {
// a l l o c a t e space for an array y o f 10
// i n t e g e r s , and a s i n g l e i n t e g e r i
int y [1 0] , i ;
for (i = 0 ; i < 5 ; i++)

// input y [i]
s can f (”%d” ,&y [i]) ;

sqr (y , 1 0) ; // c a l l the func t i on
for (i = 0 ; i < 5 ; i++)

p r i n t f (”%d\n” , y [i]) ;
}

Here is the compilation and sample run, using the gcc compiler:

$ gcc −g Learn . c
$. /a . out
5 12 13 8 88
25
144
169
64
7744

C.0.2 Analysis

The comments explain most points, but a couple need detailed elabora-
tion. First, consider line 20. Every C program (or other executable binary
program, for that matter) is required to have a main() function, where
execution will start.

As you see in line 23 and other places, every variable needs to be declared,
meaning that we must request the compiler to make space for it. Since
array indices start at 0 in C, this means we have to set up y[0] through
y[9]. The compiler also needs to know the type of the variable, in this case
integer.

The scanf() function has two arguments, the first here being the character
string ”%d”, which defines the format. Here we are specifying to read in
one integer (’d’ refers to “decimal number”).

Things get more subtle in the second argument, where we see a major philo-
sophical difference between C and R. The latter prides itself in (usually)
not allowing side effects, meaning that in R one cannot change the value of

309

an argument. The R call sort(x), for instance, does NOT change x. What
about C?

Technically, C doesn’t allow direct changes to arguments either. But the key
is that C allows—and makes heavy use of—pointer variables. For example,
consider the code:

i n t u ;
i n t ∗v = &u ;
∗v = 8 ;

The ampersand in &u means that the expression evaluates to the memory
address of u. The asterisk in v tells the compiler that we intend v to
contain a memory address. Finally, the line

∗v = 8 ;

says, “Put 8 in whatever memory location v points to.” This means that
u will now contain 8!

Now we can see what is happening in that scanf() call. Let’s rewrite it
this way:

i n t ∗z = &y [i] ;
s can f (”%d” , z) ;

We are telling the compiler to produce machine code that will place the
value read in from the keyboard to whatever memory location is pointed
to by z—i.e., to place the value in y[i]. Convoluted, but this is how things
work. We don’t need it in line 29, as we are not changing y[i].

The same principles are at work in lines 12 and 17. In the former, we
state that x is a pointer variable. But how does that jibe with line 27?
Why doesn’t the latter write something like &y? The reason is that ar-
ray variables are considered pointers. The simple expression y (without a
subscript) actually means &y[0].

If you are having trouble with this, console yourself with the fact that point-
ers are by far the most difficult concept that beguile novice C programmers
(especially computer science students!). Just persist—you’ll quickly get
used to it.

310 APPENDIX C. INTRODUCTION TO C

C.1 C++

When the Object Oriented Programming wave came in, many in the C
world wanted OOP for C. Hence, C++ (originally called “C with Classes”).

The reader is referred to any of the excellent tutorials on C++ on the Web
and in books. But here is a very brief overview, just to give the reader an
inkling of what is involved.

C++ class structure is largely like R’s S4. We create a new class instance
using the keyword new, much like the call to new() we make in R to create
an S4 class object.

As with S4, C++ classes generally contain methods, i.e., functions defined
specific to that class. For instance, in our Rcpp code in this book, we
sometimes have the expression Rcpp::wrap, meaning the wrap() function
within the Rcpp class.

C++ continues C’s emphasis on pointers. One important keyword, for
example, is this. When invoked from some method of a class instance, it
is a pointer to that instance.

“… a thorough, but readable guide to parallel computing—one that can be used by
researchers and students in a wide range of disciplines. … a ‘must-have’ reference
book …”
—David E. Giles, University of Victoria

“This is a book that I will use, both as a reference and for instruction. The examples
are poignant and the presentation moves the reader directly from concept to
working code.”
—Michael Kane, Yale University

Parallel Computing for Data Science: With Examples in R, C++ and CUDA is
one of the first parallel computing books to concentrate exclusively on parallel data
structures, algorithms, software tools, and applications in data science. It includes
examples not only from the classic “n observations, p variables” matrix format but
also from time series, network graph models, and numerous other structures com-
mon in data science. The book also discusses software packages that span more
than one type of hardware and can be used from more than one type of program-
ming language.

Features
• Focuses on applications in the data sciences, including statistics, data mining,

and machine learning
• Discusses structures common in data science, such as network data models
• Emphasizes general principles throughout, such as avoiding factors that

reduce the speed of parallel programs
• Covers the main types of computing platforms: multicore, cluster, and

graphics processing unit (GPU)
• Explains how the Thrust package eases the programming of multicore

machines and GPUs and enables the same code to be used on either platform
• Provides code for the examples on the author’s web page

Dr. Norman Matloff is a professor of computer science at the University of Califor-
nia, Davis, where he was a founding member of the Department of Statistics. He is
a statistical consultant and a former database software developer. He earned a PhD
in pure mathematics from UCLA.

K20322

w w w . c r c p r e s s . c o m

The R Series

Parallel
Computing for
Data Science
With Examples in
R, C++ and CUDA

P
arallel C

om
puting for D

ata S
cience

Norman Matloff

M
atloff

Statistics

K20322_cover.indd 1 5/13/15 9:00 AM

	Front Cover
	Contents
	Preface
	Author's Biography
	Chapter 1: Introduction to Parallel Processing in R
	Chapter 2: "Why Is My Program So Slow?": Obstacles to Speed
	Chapter 3: Principles of Parallel Loop Scheduling
	Chapter 4: The Shared-Memory Paradigm: A Gentle Introduction via R
	Chapter 5: The Shared-Memory Paradigm: C Level
	Chapter 6: The Shared-Memory Paradigm: GPUs
	Chapter 7: Thrust and Rth
	Chapter 8: The Message Passing Paradigm
	Chapter 9: MapReduce Computation
	Chapter 10: Parallel Sorting and Merging
	Chapter 11: Parallel Pre x Scan
	Chapter 12: Parallel Matrix Operations
	Chapter 13: Inherently Statistical Approaches: Subset Methods
	Appendix A: Review of Matrix Algebra
	Appendix B: R Quick Start
	Appendix C: Introduction to C for R Programmers
	Back Cover

